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Overview (1/3)

Verification: Rigorous assessment of the
correctness of a system
Software: The system is a program

1 int divBy2(int n) {
2 return n/2
3 }
4
5 int main() {
6 int x
7 int y = divBy2(x)
8 assert(y * 2 == x)
9 }

x stores an arbitrary integer
value (ISO C std. 6.2.4.5)

Can the program reach
line 8 and violate y*2==x?

• No: return PASS
• Yes: return FAIL + a

sequence of steps
leading to the violation
(counterexample)
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Overview (2/3)
CBMC version 6.4.0 (cbmc-6.4.0) 64-bit arm64 macos
[...]
** Results:
divBy2.c function main
[main.assertion.1] line 8 assertion y * 2 == x: FAILURE

Trace for main.assertion.1:

State 16 file divBy2.c function main line 6 thread 0
----------------------------------------------------
return_value_nondet=3 (00000000 00000000 00000000 00000011)

[...]
State 26 file divBy2.c function main line 7 thread 0
----------------------------------------------------
y=1 (00000000 00000000 00000000 00000001)

Violated property:
file divBy2.c function main line 8 thread 0
assertion y * 2 == x
y * 2 == x

** 1 of 1 failed (2 iterations)
VERIFICATION FAILED
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Overview (3/3)

1 int divBy2(int x) {
2 return x/2
3 }
4
5 int main() {
6 int x = *
7 assume(x % 2 == 0)
8 int y = divBy2(x)
9 assert(y * 2 == x)

10 }

assume(cond) restricts
analysis to executions where
cond != 0

Useful to prune out
unwanted counterexamples,
model the environment in
which the code will run, etc.

CBMC version 6.4.0 (cbmc-6.4.0) 64-bit arm64 macos
Type-checking divby2.safe
[...]
** Results:
divby2.safe.c function main
[main.assertion.1] line 9 assertion y * 2 == x: SUCCESS
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Model checking

One way to implement formal verification

Given formal representations of the system and of
what makes it correct, exhaustively explore the
former and look for violations

Essentially, it’s proof by lack of counterexamples

© Fully automated
© Can be applied in many domains (HW, SW,

protocols, . . . )
© Works well with concurrency
§ Mainly scalability (we’ll see)
§ Some expertise required
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There are other ways. . .

Testing

© Very widespread
© Can be surprisingly

effective (e.g., fuzzing)

§ Cannot prove
correctness

§ Concurrency bugs?

Theorem proving

© Can exploit
sophisticated tactics

© High expressiveness

§ Typically only
semi-automated

§ Requires expert
knowledge
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What about abstract interpretation?

Roots
AbsInt: collecting semantics and lattice theory
ModChk: operational semantics and modal logic

Goals
AbsInt: building static analysers
ModChk: proving properties

In practice, they are routinely used together
(more on that later)

2024-12-09 Software Verification, Di Stefano 8 / 36



Model Checking in a nutshell

Input:

1. A Kripke structure M
2. A property φ describing “good” computations

Checks whether M |= φ

“φ holds in M”
“M models/is a model for φ” (hence the name)

Output: PASS, or FAIL + counterexample

Caution
The term “model” creates lots of confusion. . .
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Kripke structure

Assume you have a (finite) set AP of atomic
propositions. Each a ∈ AP represents a basic “fact”,
e.g., “we are at line 8” or “the value of x is 0”.

Then a Kripke structure is 〈S, I,R,L〉

S: States (finite)
I ⊆ S: Initial states
R ⊆ S× S: Transition relation (total1)
L : S→ 2AP: Labelling function: L(s) tells you
which APs hold in state s

1I.e., every state has at least one outgoing transition
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(Linear) Temporal Properties

Consider paths through M rooted in an initial state

R is total ⇒ Infinite-length paths π = s1s2s3 . . .
with si R si+1 for every i (aka si→ si+1)

A property describes how good paths should be.
Model checking = look for bad paths

Paths are just ordered sequences of states, hence
“linear” and “temporal”

(Not the only logical framework)
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LTL in a nutshell (1/2)

A logic for linear temporal properties φ

When does a state si in a path satisfy φ? (si |= φ)

true always
a iff a ∈ L(si)

¬φ iff si ̸|= φ

φ1 ∧ φ2 iff si |= φ1 and ∧ si |= φ2

Ok, but where is the temporal part?
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LTL in a nutshell (2/2)

si |=



























Xφ iff si+1 |= φ [next]
φ1 U φ2 iff ∃j ≥ i.sj |= φ2∧

∧∀k.i ≤ k < j⇒ sk |= φ1 [until]
Fφ same as true U φ [finally]
Gφ same as ¬F¬φ [globally]

si

Xφ
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φ1
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φ1
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φ2

Path π = s1s2 . . . satisfies φ iff s1 |= φ
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Explicit-state model checking 1/2

1 int divBy2(int x) {
2 return x/2
3 }
4
5 int main() {
6 int x;
7 int y = divBy2(x)
8 assert(y * 2 == x)
9 }

φ = G(lineIs8⇒ yTimes2Eqx)

Initial steps:
1. Turn program into a

Kripke Structure M
2. Negate the property:

F(lineIs8∧¬yTimes2Eqx)

3. Now turn the negated property into a Büchi
automaton A. These are automata that recognize
infinite words (ω-regular). A word is accepted if it
makes A visit an accepting state infinitely many
times.
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Explicit-state model checking 2/2

4. Explore the synchronous product M⊗ A
(Intuitively, this captures how A evolves when fed
paths over M)

5. If you find a path in M⊗ A that loops through an
accepting state, it represents a path in M that
violates φ (counterexample). Thus, M ̸|= φ

6. Otherwise, M |= φ

Explicit-state = Direct representation of M
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Complexity of LTL model checking

O(|M| · 2|φ|)

§ The automaton construction is exponential
§ |M| ∼doubles for each added AP

(state space explosion problem)

Many attempts at mitigation

• On-the-fly MC: only keep portions of M in memory
• Compositional MC: split M, solve smaller problems,

compose these together
• Symmetry reductions
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Symbolic Model Checking

A way to overcome state space explosion

Define your system/program as:

• A vector of n (finite-state) variables x = x1, . . . ,xn
• A predicate init(x) that describes the initial states
• A set of n functions next(xi) = fi(x) describing how
xi changes from one state to the next

Explicit-state MC = enumerate all initial states, use
next to compute successors, construct M,. . .

Symbolic MC = directly manipulate init, next
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Symbolic Model Checking

For simplicity let x a vector of Booleans

• init(x) is already a Boolean function
• We can always express the system
next(x1), . . . ,next(xn) as

R(x1, . . . ,xn,x
′
1, . . . ,x

′
n
)

such that x′ is a successor of x iff R(x,x′) = true

We can store/manipulate these
(and any Boolean function) with
efficient data structures called
Binary Decision Diagrams (BDDs)

Picture credit: Wikipedia
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Model-checking Gp(x), symbolically

Intuitively: first compute BDD for all reachable states,
then intersect with negated p

states = BDD(false) // BDD for an empty set
frontier = BDD(init)
tr = BDD(R)
notP = BDD(¬p)
do {

// Update visited states
states = states ∨ frontier
// Update frontier
frontier = Image(states , tr) ∧¬states

} while (frontier not empty)
return PASS if (states∧ notP is empty) else FAIL

Image(states, tr) is the (BDD for the) set of
successors of states according to tr

(Checking BDDs for emptiness is easy)
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Final notes on BDDs

© Can be generalized to all of LTLa

Intuitively, fixed-point computation is guided by
the “shape” of the property

© Impressive advance in hardware domain:
“1020 States and Beyond” in 1990 (!)

§ BDDs also become cumbersome
§ Ordered BDDs mitigate this but:

1. Finding a good variable ordering is hard
2. Some functions always yield a BDD of

exponential size
§ Still finite-state!
aActually, “standard” algorithms are based on branching-time

logics that are a superset of LTL
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Bounded model checking

States reachable within k steps:

Reachk = init(x(1))∧R(x(1),x(2))∧ . . .∧R(x(k−1),x(k))

where each x(1) is a vector of Boolean variables

To verify safety (Gp(x)):

1. Consider P = p(x(1))∧ . . .∧ p(x(k))

2. Solve Reachk ∧¬P. . . Using a SAT solver!
SAT Counterexample found (a reachable

state where ¬p), system is unsafe
UNSAT Bounded system is safe, cannot say

anything about the whole system
(underapproximation)
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From C to SAT: Basics2

x=x+y;
if(x!=1)

x=2;
else

x++;
assert(x<=3);

→

x1=x0+y0;
if(x1 != 1)

x2=2;
else

x3=x1+1;
x4=(x1!=1)?x2:x3;
assert(x4 <=3);

→

C := x1 = x0 + y0∧ x2 = 2∧
x3 = x1 + 1∧
(x1 ̸= 1)⇒ x4 = x2∧
¬(x1 ̸= 1)⇒ x4 = x3

P := x4 ≤ 3

1. C code (+ assertions)
2. Static single assignment (SSA) pass
3. SAT formula (C∧¬P)

(Encode +,-,*. . . as Boolean circuits)

2Adapted from Clarke et al. 2004

2024-12-09 Software Verification, Di Stefano 22 / 36



From C to SAT: Reduction

• Function calls are inlined
• Loops are unwound: apply k times

while(e) {P}⇒ if(e) {P}; while(e) {P}

(ignore last while)
• Similar approach for recursive function calls &

backwards gotos
• During unwinding, pointer dereferences (&p) are

substituted with their variables

int a, b, *p;
if(x) p=&a; else p=&b;
*p=1;

→
int a, b, *p;
if(x) p=&a; else p=&b;
if(x) a=1; else b=1;

2024-12-09 Software Verification, Di Stefano 23 / 36



Pros and cons of BMC (so far)

© Rapid progress in SAT ⇒ Very efficient
© Can scale to the complexity of real software
© Minimal, precise counterexamples
§ Bounded analysis
§ Tailored for safety checking

(All of LTL may be reduced to safety-checking an
appropriate automaton, but this has a cost)

§ Still finite state
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Why infinite-state matters

. . . Aren’t all computers finite-state? Yes, but
unbounded things are not uncommon in software

• “bignum” types, strings, recursive structs. . .
• Dynamic memory management (malloc, free)
• Process/thread creation and destruction (fork,
pthread_create)

Treating these unknowns as ranging over ∞ domains
might be more elegant and potentially more efficient

However, need formal tools able to handle these
domains
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SMT-based BMC

SMT = Satisfiability Modulo Theories

• Solver is not limited to Booleans
• Can reason about variables of certain types for

which a suitable theory exists (= formal description
of operators on these variables)

• Example: LIA = theory of integers with linear
arithmetic (+, −, but no multiplication)

© We can implement BMC tools that encode ints as
integers, floats as reals. . . and then use an SMT
solver ⇒ Verification over infinite state spaces

§ Many interesting theories are undecidable
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Predicate abstraction

Another way to handle large/infinite state spaces

• Define a set of predicates p1, . . .pn over x
• These induce (at most) 2n abstract states s♯

i
,

i.e., from (¬p1, . . . ,¬pn) to (p1, . . . ,pn)

• We add a transition s♯
i
→ s♯

j
whenever a concrete

state s ∈ s♯
i

can transition into s′ ∈ s♯
j

• Similarly abstract init and φ

• Use a procedure for finite-state MC

© Sound (it is an abstract interpretation after all!)
§ Overapproximation. What if the MC step FAILs?
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CEGAR

(Counterexample-Guided Abstraction Refinement)

1. Build initial abstraction M♯0, φ♯0

2. Check if abstract system M♯0 satisfies φ♯0

3. If SAFE, exit (SAFE).
4. If FAIL with counterexample π♯0:

If it can be concretised, exit (FAIL).
Otherwise (spurious):
a. Find at what step π♯0 becomes spurious
b. Extract new predicates with this information
c. Compute a new abstractions M♯1, φ♯1

d. Go back to square 2.

© Fully automated (we can extract pr. from M, φ)
§ Sensitive to which predicates are used
§ Some properties may need ∞ refinements
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Applications to CAS

(Collective Adaptive Systems)

Collections of concurrent agents that interact with
each other and adapt to changes

1. Collective behaviour emerges from local choices
2. Their evolution is hard to predict and reason about
3. Most modelling tools only focus on simulation
4. Can tools from SW verification help?
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Our approach

• Describe system in a high-level DSL
• Attribute-based interaction: agents observe and

react to other agents’ exposed variables
• Structural encoding of the system as a C program
• Sequentialization: concurrent system → sequential

program (+ additional nondeterminism)

2024-12-09 Software Verification, Di Stefano 30 / 36



Takeaways

• Relatively low-effort
• Not limited to our language
• Can benefit from progress in SW verification
• Also suitable for simulation

- Use a dummy assertion that fails after k steps
- Give program to a SAT-based BMC
- Randomize the behaviour of the SAT solver to get

different traces

Flocking behaviour after
disruption by a bird of prey

Ant colony determining the
shortest path to a food source
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(Some) Resources

Model checkers for C
CBMC https://github.com/diffclue/cbmc
CPAchecker https://cpachecker.sosy-lab.org/
ESBMC https://github.com/esbmc/esbmc
UAutomizer https://ultimate-pa.org/automizer

SAT/SMT solvers
KissSAT https://github.com/arminbiere/kissat/
Z3 https://github.com/Z3Prover/z3
MathSAT https://mathsat.fbk.eu/
CVC5 https://cvc5.github.io/

Competitions
SV-COMP https://sv-comp.sosy-lab.org/
SAT https://satcompetition.github.io/
SMT-COMP https://smt-comp.github.io/2024/
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Conclusions

• Long history of MC success in the HW domain
• Increasingly able to tackle real-world SW

MS Windows Driver Foundation (early 2000s)
NASA Mars rovers (2004)
Boot code in AWS data centres (2018)

• Advantages from mixing multiple formal methods
• We can use SW MCs as backends (I know I do ©)
• Every § is a topic of active research
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