

Emerging Synchrony in Applauding Audiences

Formal Analysis and Specification Luca Di Stefano, Omar Inverso REoCAS Colloquium, ISoLA, 29 Oct 2024

The Story So Far

From this... (2019)

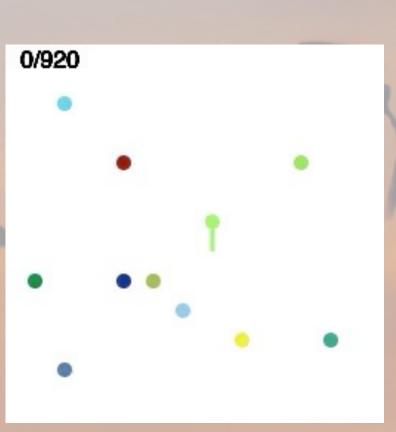


PHOTO: AMIRHOSSEIN KHEDRI, UNSPLASH. ANIMATION: DE NICOLA, DI STEFANO, INVERSO (LINK)

Emerging Synchrony in Applauding Audiences | Di Stefano, Inverso | ISoLA'24

The Story So Far

To this... (2022)

PHOTO: AMIRHOSSEIN KHEDRI, UNSPLASH. ANIMATION: DE NICOLA, DI STEFANO, INVERSO, VALIANI (LINK)

Emerging Synchrony in Applauding Audiences | Di Stefano, Inverso | ISoLA'24

The Story So Far

...And this (2023)

PHOTO: AMIRHOSSEIN KHEDRI, UNSPLASH. ANIMATION: DE NICOLA, DI STEFANO, INVERSO, VALIANI (LINK)

Emerging Synchrony in Applauding Audiences | Di Stefano, Inverso | ISoLA'24

Another Example of Collective Behaviour

SOURCE: <u>HTTPS://WWW.YOUTUBE.COM/WATCH?V=AU5TGPPCPUS</u>

- Formal specification of a clapping audience
- (Minor extensions to the formal language we used)
- Simulation through an automated workflow
- Verification that convergence is stable (in our model)

Our Specification in a Nutshell

- Each agent claps at its own frequency
- Agents can listen to audience
- When many agents clap at the same moment...
- ...Other agents can sense it...
- ...and try to synchronise with that collective rhythm

Specification of collective adaptive systems

Original focus:¹

- Virtual stigmergies (replicated key-value stores)
- Attribute-based Communication
- Shared memory was also allowed
- More recently: agents observe and react to exposed features (attributes)^{3,4}

¹De Nicola, Di Stefano, Inverso. <u>Multi-agent systems with virtual stigmergy</u>. Sci. Comput. Program. 20202 ²De Nicola et al. <u>Modelling flocks of birds and colonies of ants from the bottom up</u>. STTT, 2023 ³De Nicola et al. <u>Intuitive Modelling and Formal Analysis of Collective Behaviour in Foraging Ants</u>. In CMSB'23

- LAbS assumes one action per time step, but we have to model agents that act at the same time (similar to cellular automata)
 - 1. Restrict interleaving (rounds with 1 action per agent)
 - 2. Store "intermediate" state updates separately
- Allow an agent to count how many agents of type T satisfy φ (e.g., how many are clapping right now):

```
result := count T x, \varphi(x)
```


- *T* clapping period
- c counter variable: when 0, the agent is clapping
- sign whether c should increase or decrease

Repeat forever: sign := if c = 0 then 1 else if c = T / 2 then - 1 else sign c := c + sign $T/2 \uparrow c$ $T/2 \uparrow c$ $T/2 \uparrow t$ $T/2 \uparrow t$

- Check how many agents are clapping
- Use a threshold value to distinguish loud moments
- **Track the time interval** θ between loud moments

audienceClap := count Agent *i*, $c_i = 0$ θ := if audienceClap \geq loud then 0 else θ + 1

- After 2 loud moments, agents can compare their own T with the time interval θ between them
- New T = average of old T and θ
- (Bounded by parameters *Tmin, Tmax*)
 T := (T + θ) / 2
 T := min(max(*Tmin, T*), *Tmax*)

Other adaptation mechanisms (see our paper!)

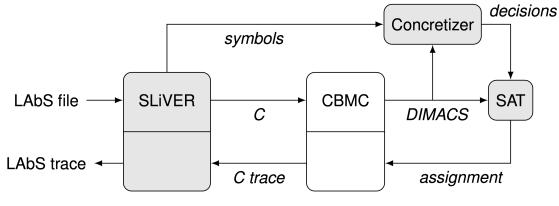
- Lower loudness threshold if loud moments are too few
- Increase loudness threshold if loud moments are many
- If $T = \theta$ and agent not in sync, adjust phase

	Name	Meaning	Initial value(s)
Variables	Т	Clapping period	Tmin,, Tmax
	С	Clapping counter	1, <i>T</i> /2
	sign	How c should be updated	1
	loud	Loudness threshold	$loud^{(0)}$
	θ	Time interval between loud moments	$-\infty$
Parameters	Ν	Number of agents	16
	Tmin	Minimum value for T	8
	Tmax	Maximum value for T	20
	loud ⁽⁰⁾	Initial loudness threshold	4

SLiVER¹ for SAT-based Simulation

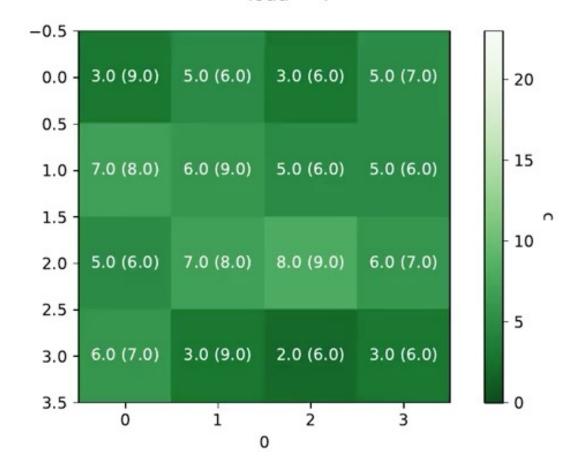
- LAbS specification \Rightarrow sequential C program²
- Use off-the-shelf verification tools for C
- SAT-based BMC + Nondet heuristics + assertion that is violated after B steps = random execution traces

Problem

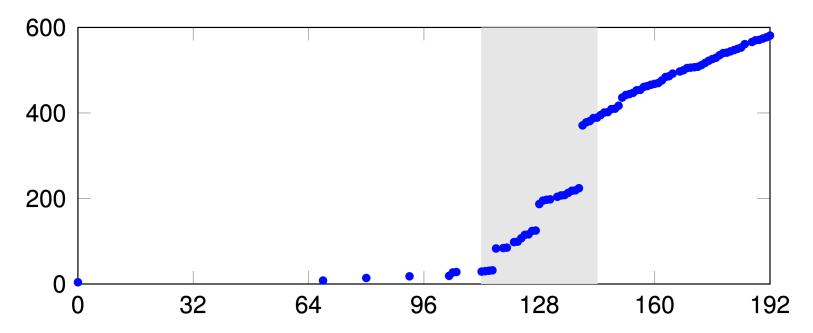

- Tool encodes nondeterministic state by **symbolic variables** (for verification purposes)
- Decision not efficient, esp. with nondet heuristics

¹<u>https://github.com/labs-lang/sliver</u>

²Di Stefano, De Nicola, Inverso. Verification of Distributed Systems via Sequential Emulation. TOSEM, 2022

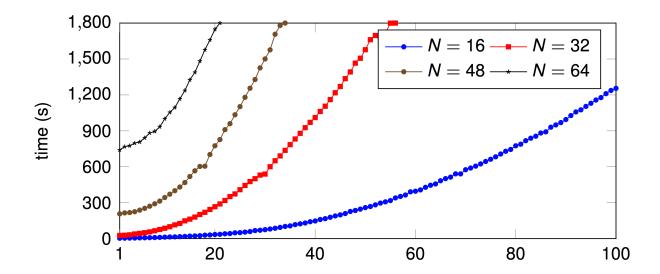

- Simulation: no need to explore multiple initial states
- Tell SAT to use one (random) value for each variable
- Still allow SAT to backtrack
- (Applicable to any nondet variable that can be guessed statically)

(Gray=components we built or modified)


tsl = -1loud = 4

AVAILABLE AT HTTPS://DOI.ORG/10.5281/ZENODO.11374963

Emergence of Synchronous Applause


- 1000 simulations, 192 steps each
- 58% synchronise before the end of the trace
- "Phase transition" around 128 time steps

Stability of Synchronous Applause

- Can our agent break synchrony after reaching it?
- BMC, increasing bound, assuming audience in synchrony at time 0
- We stop at bound=100 or after timeout (30')
- No violations observed ⇒ stable synchrony

- We presented a first attempt at formal modelling of a clapping audience
- Mix of simulation and verification to analyze its emergent behaviour
- Formal approach to CAS modelling has several benefits
 - High-level formalisms
 - Intuitive specifications
 - Access to efficient analysis techniques

... As pointed out by Rocco in countless occasions ©

AbC, CARMA, DReAM, KLAIM, SCEL, ... (and LAbS!)

- Improve simulation performance
- Improve range of supported properties for verification
- Data-driven approaches
 - Given one or more traces of a system S
 - Write a LAbS model M
 - Does M allow (all, most, some) of the traces from S?
- (Do you have interesting case studies? ⓒ)