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Abstract Autonomous multi-agent systems use differ-
ent modes of communication to support their autonomy
and ease of interaction. In order to enable modelling
and reasoning about such systems, we need frameworks
that combine many forms of communication. R-CHECK
is a modelling, simulation, and verification environment
supporting the development of multi-agent systems, pro-
viding attributed channelled broadcast and multicast
communication. Another common communication mode
is point-to-point, wherein agents communicate with
each other directly. Capturing point-to-point through
R-CHECK’s multicast and broadcast is possible, but cum-
bersome and prone to interference. Here, we extend
R-CHECK (and its underlying formal calculus RECIPE)
with bidirectional attributed point-to-point communi-
cation, which can be established based on identity or
properties of participants. Moreover, we provide a com-
positional semantics that clearly describes how different
modes of interaction co-exist without interference. We
also support model-checking of point-to-point interac-
tions by extending linear temporal logic with observation
descriptors related to the participants in this communi-
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cation mode. We argue that these extensions simplify
the design, and demonstrate their benefits by means of
an illustrative case study.

1 Introduction

Multi-agent Systems (MAS) are some of the most in-
teresting and challenging systems to design. This is
particularly the case when tasks of the system require
interaction between agents based on mutual interest and
changing tasks. Machines operating in this way need
to create opportunistic interactions. This is possible if
agents can reconfigure their interaction interfaces and
dynamically form groups at run-time based on changes
in their context. We call such systems Reconfigurable
MAS [2423]. We are interested in designing such sys-
tems and, due to the challenge involved, supporting
reasoning about the behaviour of designed systems to
improve their reliability and security.

MAS are often programmed using high-level lan-
guages that support domain-specific features of MAS.
For example, emergent behaviour [8l[3TL9], interactions [12],
intentions [18], knowledge [22], and so forth. These no-
tions are too involved to be directly encoded in plain
transition systems. Thus, we often want programming
abstractions that focus on the domain concepts, abstract
away from low-level details, and consequently reduce
the size of the model under consideration. The rationale
is that designing a system requires having the right level
of abstraction to represent its behaviour. Furthermore,
one would like to reason about the design to check that
it indeed fulfils its requirements. Model checking is a
prominent technique for such reasoning. Thus, model
checking tools that support high-level features of Recon-
figurable MAS are required to enable reasoning about
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high-level features of designs. We need to support an
intuitive description of programs, actions, protocols, re-
configuration, self-organisation, etc.

We have previously presented ReCiPe [13l[12] and
R- CHECK [I], a framework and a toolkit for design-
ing, simulating, and verifying reconfigurable multi-agent
systems. ReCiPE supported multiple modes of communi-
cation through predicated communication on broadcast
and multicast channels. Agents could use a predicated
broadcast to target only agents satisfying specific condi-
tions. They could use a predicated multicast to ensure
that all participants satisfy certain conditions. A unique
feature of this framework is its active support of reconfig-
uration. ReCiPe allows agents to connect and disconnect
from multi-cast channels during runtime. Thus, the dis-
covery of interested agents (through broadcast) and
the formation of ad-hoc groups with them (through
multicast) becomes simple and intuitive. While RECIPE
presented a theoretical model based on transition sys-
tems and their symbolic versions, R-CHECK extended
it with a high-level modelling language. R-CHECK en-
ables reasoning about systems through simulation and
model checking. In order to reason about intentions of
senders, we extended LTL to LTOL, which allows next op-
erators that are conditioned upon contents, predicates,
and senders of messages. This allows further insights
into the interactions that happen in the system to be
included in logical specifications. LTOL model checking
was supported through a translation to NUXMV [I7].

One of the challenges of modelling with R-CHECK
is to capture (anonymously) the existence of recipients.
Indeed, both broadcast and multicast channels allow
messages through in the case that there are no recipients.
In order to model situations in which knowledge of the
existence of others is needed, we made assumptions
about sufficiently many participants being available.
Based on this assumption, we were able to emulate
point-to-point communication through a combination
of broadcast and multicast messages. However, this was
cumbersome and prone to interference, which could
easily lead to deadlock. In addition, encoding point-to-
point communication through a protocol of coordination
that requires multiple messages, created complicated
models that were hard to understand and reason about.

In the conference paper [2], we extended R-CHECK
by supporting unidirectional attributed point-to-point
communication, where data flows only in one direction,
i.e., from the supplier to the getter. This article is an
extended and an enhanced version of [2]. There are three
new contributions with respect to [2].

Particularly, our new contributions are:

(i) we extend the theoretical model ReCiPe and its
implementation in R-CHECK by bidirectional point-

to-point communication. That is, we allow both the
getter and the supplier to exchange data during
communication. We later show in the case study
that this has a positive impact on modelling. It
majorly reduces the size of R-CHECK models that
rely on point-to-point communication. We show a
major reduction and simplification of the case study
with respect to its early implementation in [2].

(ii) we provide a formal compositional semantics for
R-CHECK and show that it behaves as expected. That
is, the semantics describes systems both at local and
distributed level, and the parallel composition is a
commutative monoid.

(iii) we develop a new open-source implementation of
R-CHECK as a Visual Studio Code (VSCode) exten-
sion, featuring improved parser and providing better
error reporting, syntax highlighting, and keyword
autocompletion. Moreover, it supports basic type-
checking.

This article is structured as follows: in Sect. [2, we
give a background on ReCrPe [I3[12], the underlying
theory of R-CHECK. In Sect. [3] we augment the language
of R-CHECK with point-to-point communication and its
symbolic semantics. In Sect. [4l and Sect. 5] we formally
present the syntax and the compositional semantics
of R-CHECK. In Sect. [6] we extend the LTOL logic to
allow specification of point-to-point communication. In
Sect. [7} we provide a case study to model autonomous
resource allocation, and in Sect. [§| we introduce the new
implementation of R-CHECK. Finally, we discuss related
work in Sect. [9] and report our concluding remarks in
Sect.

2 Background Materials: The ReCiPe Formalism

We present background materials necessary to introduce
our language extension and its semantics.

ReCiPe [I3[12] is a symbolic concurrent formalism
that serves as the underlying semantics of R-CHECK.
ReCIPE relies on (attributed-) channel communication.
Agents agree on a set of channel names CH to exchange
messages on. These messages carry data (in variables D)
specified by senders. Agents can constrain the targets
of communication by attributing the messages through
predicates, similar to AbC [8/[0]. As opposed to the lat-
ter, RECIPE supports dynamic reconfiguration by letting
agents disconnect from channels. Moreover, RECiPE sup-
ports two kinds of communication, channelled-broadcast
and channelled-multicast. In channelled-broadcast the
communication is non-blocking, that is, the communi-
cation can still go through if a targeted receiver is not
ready to engage. Contrarily, in multicast, the communi-
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cation is blocking until all targeted receivers are willing
to accept the message and engage in the communica-
tion. Thus, the set of channels CH includes a channel
used exclusively for broadcast, *, which agents cannot
disconnect from.

Usually, broadcast is used for service discovery: for
instance, when agents are unaware of the existence of
each other, and want to be discovered or to establish
links for further interaction. On the other hand, multi-
cast can capture a more structured interaction where
agents have dedicated links to interact on. The recon-
figuration of interaction interfaces in RECIPE makes it
possible to integrate the two ways of communication
in a meaningful way. That is, agents may start with a
flat communication structure and use broadcast to dis-
cover others. With RECIPE’s channel passing, agents can
dynamically build dedicated communication structures
based on channel references they exchange.

In order to target a subset of agents in an interaction,
sending agents rely on a set of property identifiers v,
i.e., identifiers that senders use to specify properties
required of targeted receivers. For instance, agent k
may specify that it wants to communicate on channel
a with all agents that listen to a and satisfy property
BatteryLevel > 30%. In other words, property identifiers
are used by agents to indirectly specify constraints on the
targeted receivers in a similar manner to the attribute-
based paradigm [8l[9].

Each agent has a way to relate property identifiers
to its local state through a re-labelling function f. We
have generalised this function in R-CHECK to deal with
more sophisticated expressions. Thus, agents specify
properties anonymously using these identifiers, which
are later translated to the corresponding receiver’s local
state. Messages are then only delivered to receivers that
satisfy the property after re-labelling.

Formally, an agent can be defined symbolically in
terms of a Discrete System (DS) [29]. A DS can be
thought of as an encoding of a transition system through
Boolean predicates over a set of system variables. To
encode the current state and the next state of the sys-
tem, the two copies of system variables are used. The
assignments to the original copy of variables, say V', are
used to denote the current state of the system. Moreover,
a primed copy V' is used where its assignments denote
the next state of the system after command execution.
In this way, the satisfaction of a Boolean predicate over
the assignments of V' and V' denotes the execution of
system event.

More precisely, an agent is defined as follows:

Definition 1 (Agent) An agent is a tuple
A=(V, [, g%, ¢", T T",0),

e Vis a finite set of typed local variables.

e f: PV — Vis a function, associating property identi-
fiers to local variables.

e ¢° C VX CH XD X PV is a send guard specifying
the property of the targeted receivers. Based on the
current assignments of V, CH, and D, ¢° simplifies to
a predicate over PV and it is evaluated over the state
of every receiver j by applying f;.

e ¢" C VX CH is a receive guard describing the connect-
edness of an agent to a channel ch. We let ¢ (v, *)
= true for every v, i.e., every agent is always connected
to the broadcast channel.

e 75 CVxV' xDxcHand T" C Vx V' x D x
CH are assertions describing, respectively, the send
and receive transition relations. We assume that an
agent is broadcast input-enabled, i.e., Vo, d 30’ s.t.
T"(v,v',d, ) holds.

e 0 is an assertion on V describing the initialization of
the agent.

In this definition, a state of an agent s is an assign-
ment to the agent’s local variables V, i.e., for v € V
if Dom(v) is the domain of v, then s is an element in
[I,cyDom(v). In case that all variables range over a
finite domain then the number of states is finite. A state
is initial if its assignment to V satisfies 6. Note that
A is a discrete system, and thus we use the set V' to
denote the primed copy of V. That is, V' stores the
next assignment to V. Moreover, we use Id to denote
the assertion A . v = v’. That is, V" is kept unchanged.
We use d to denote an assignment to the data variables
D. We also abuse the notation and use f for the assertion
/\p'UePV pv = f(pv).

Agents exchange messages of the form m = (ch,d, i, 7),
where ch is the channel m is sent on, d the data it car-
ries, ¢ the sender identity (we assume a unique identifier
for each agent), and 7 the assertion specifying the prop-
erty of targeted receivers. The predicate 7 is obtained
by grounding the sender’s send guard on the sender’s
current state, used channel ch, and exchanged data d.

Send transition relations 7° characterise what mes-
sages may be sent, with one message sent at each point
in time, whereas receive transition relations 7" charac-
terise the reaction of a receiving agent to a message.

We use KEEP(X) to denote that a set of variables
X is not changed by a transition (either send or re-
ceive). That is, KEEP(X) is equivalent to the assertion
Azcx © = 2'. Note that |d = KEEP(V).

A set of agents agreeing on property identifiers PV,
data variables D, and channels CH defines a system. We
give the semantics of systems in terms of predicates to
facilitate efficient symbolic analysis (through BDD or
SMT). We use | for disjoint union.
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Formally, a RECIPE system is also a DS, defined as
follows:

Definition 2 (System) Given a set {4;}; of agents, a
system is S = (¥, p, 0), where ¥ = |4V}, a state of

?
the system “s” is in [[; [[,cy. Dom(v) and the initial

assertion # = A 6;. The transition relation p of S is as
i
follows:

p= 3ch. 3. \/ TF(Vi, V), D,ch)A
k

g5 (Vj, ch) A g3 (Vi ch, D, PV)A
7;T(Vjv ‘/le D, Ch)
Ipv.f; A
j{é\k 7 \Y% ﬁg;(Vj,Ch) Ald;
V —g; (Vk, ch,D,PV) A ch = x A ld;

The transition relation p describes two modes of
interactions: blocking multicast and non-blocking broad-
cast. Formally, p relates a system state s to its successors
s’ given a message m = (ch,d, k, 7). Namely, there ex-
ists an agent k that sends a message with data d (an
assignment to D), on channel ch, with assertion 7 (ob-
tained as g3 (vk,ch,d,-)) on channel ch and all other
agents are either (a) connected to channel ch, satisfy the
send predicate 7, and participate in the interaction (i.e.,
have a corresponding receive transition for the message),
(b) not connected and idle, or (c) do not satisfy the send
predicate of a broadcast and idle. That is, the agents sat-
isfying 7 (translated to their local state by the conjunct
3pv.f;) and connected to channel ch (i.e., g§(s’,ch))
get the message and perform a receive transition. As a
result of interaction, the state variables of the sender
and these receivers might be updated. The agents that
are not connected to the channel (i.e., =gj(s?,ch)) do
not participate in the interaction and stay still. In case
of broadcast, namely when sending on *, agents are
always connected and the set of receivers not satisfying
7 (translated again as above) stay still. Thus, a blocking
multicast arises when a sender is blocked until all con-
nected agents satisfy IPv.f; A w. The relation ensures
that, when sending on a channel different from x, the
set of receivers is the full set of connected agents. On
the broadcast channel agents not satisfying the send
predicate do not block the sender.

Ezample 1 Consider a RECIPE system that is composed
of two agents A; and As, agreeing on the set of channels
CH = {*, c}, the data variables D = {MsG, LNK}, and the
property variables Pv = {pv}. Let us also assume they
also agree on the existence of an enumerated type enum
that contains at least an element named client. Here, we
use non-Boolean variables to simplify the presentation.

A; is defined as follows:

V1 = {cLink : channel, role : enum}

— f1 ={pv — role}

— g5 is (ch = % A\ pv = client)

— 97 is true

— T is (KEEP(V1)Ad(MSG — join, LNK +— ¢) A ch = %)
— T{ is KEEP(V})

— 61 is (cLink = c A role = client)

That is, A1 has two local variables cLink of channel
type and role of enum type. Moreover, A; relabels the
property identifier pv locally as the value of its local
variable role. The send predicate g§ indicates that A;
intends to interact on the broadcast channel x with
agents that satisfy the property pv = client according to
their local relabelling. The receive predicate g] indicates
that A; is always enabled to receive.

Behaviour-wise, A; can send a message join with
a link ¢ on the broadcast channel x. Moreover, A; is
not willing to receive any messages. Initially, the local
variables of Ay are set such that cLink is assigned link ¢
and role is a client.

Ay 1s defined as follows:
— V5 = {cLink : channel, role : enum}
— fa = {pv — role}
— g5 is false
— g5 is true
— T3 is false
. (cLink = L AcLink’ = d(LNK) A KEEP(role)A
- T d(MSG — join) A ch = x)
— 05 is (cLink = L A role = client)

Clearly, A, only differs from A; with respect to the
send guard, the send transition relation (which are set
to false), the receive transition relation (which indicates
that A, is willing to receive a message named join and
stores the value of LNK of the message in cLink) and the
initial condition where cLink is set to L. By applying
Def. | we have that the composition of A; and A
indeed forms a RECIPE system (where local variables of
Aq and A, are joined with disjoint union to account for
similar local naming).

Now, starting from the initial conditions of both
agents, we apply the system transition relation p. Clearly,
there exist only one message that satisfies p, namely the
message on channel x and data variables assigned as
follows {MSG + join, LNK — c}, where A; is the sender
(i.e., its send transition relation 77° is satisfied). More-
over, there is only one receiver As which is connected to
* (i.e., g5 is satisfied), its receive transition relation 75
is satisfied with respect to the same message, and the
send guard g5 is (ch = x A pv = client) in conjunction
to local relabelling of As (i.e., pv = role) is satisfiable.
Thus, p holds and as a result Ay sets its local cLink
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variable to c that is communicated in the message. In
the next cycle, p is checked again based on the new
updated states.

3 Extending ReCiPe with Attributed
Point-to-Point Communication

We propose a Point-to-Point communication extension
to R-CHECK. However, to be able to support this, we
first need to extend the semantic framework, i.e., RECIPE.
Notice that we rely on RECIPE as the underlying semantic
framework for R-CHECK.

3.1 ReCiPE with Point-to-Point Communication.

There are several ways to support Point-to-Point Com-
munication in the literature. For instance, we can use
the complementary send/receive communication as in -
calculus [26] or the tuple-space approach as in Klaim [19].
In our case, we decided to use a specialised attributed
Point-to-Point Communication that takes inspiration
from the tuple-space approach while keeping models
amenable to formal verification. Note that a tuple-space
approach, where agents are allowed to put/get tuples
to/from a shared/private tuple-space, can imply higher-
order communication. A tuple can be simply the code
of an agent. Moreover, a tuple-space is usually modelled
as a parallel composition of existing tuples. This means
that the size of the tuple space can grow uncontrollably,
and thus lead to verification problems.

Our approach consists of eliminating the verification-
problematic tuple space, and encoding it as parametric
supply-transitions in the code of each agent. Namely, we
provide two primitives: get and supply. The get allows
an agent to nondeterministically get data from another
agent based on either satisfaction of a predicate g or on
the identity of the agent (its locality). That is, an agent
can ask for data from a potential supplier by either sup-
plying the name of the targeted agent (i.e., its locality
¢) or predicating on the targeted agent’s state. Instead
of creating a private tuple space for each agent, we pro-
vide local state-parametric supply-transitions for agents
willing to supply data to others. Namely, a supplier is
another agent with a matching supply transition. Note
that matching here can be attributed (i.e., based on
predicate satisfaction) or directed (i.e., based on named
locality). At a system level, the names (localities) that
compose the system are known. We introduce a reserved
word “any” to denote a wild card over the localities in
the system. Thus, when agents refer to localities they
can be either from the set of names of agents or the
keyword “any”. Formally, we extend Def. [I] as follows.

Definition 3 (Poin-to-Point Extended Agent) An
agent is atuple A = <‘/7 f7 gs) gr7 gp7 TS, TT7TG’TS7 9>7

where:

e g? C Vx PV is a get-guard specifying the property of
the targeted supplier. Similar to send guards, the get-
guard g¢P is evaluated based on the current evaluation
of V of the getter to a predicate over PV and it is
evaluated over the state of one supplier j by applying
fj-

e T¢ CV xV’'xdx{is an assertion describing the
get-transition relation. Namely, given the current as-
signment to local variables V', the get-transition re-
lation specifies the data d the getter is interested in,
from what locality ¢, and the updates to local vari-
ables V' if the transition is executed. As mentioned
¢ ranges over the names of agents in the system and
“any”.

e 75 CV xV’'xdx/{is an assertion describing the
supply transition relation. Similarly, the supply tran-
sition relation specifies the data that the supplier is
willing to provide given that the assertion over V, V’,
and / is satisfied.

e all other components are defined as before in Def.

Now, we are ready to define a ReCiPE system and
its semantics. The construction of system is exactly as
reported in Def. 2l The only thing that substantially
changes is the system-level semantics. Our goal is to
provide a well-behaved predicate semantics for point-to-
point communication while co-existing with the original
broadcast and multicast semantics.

The main question that we need to answer is what
happens when a point-to-point communication transi-
tion is concurrently enabled with a broadcast or mul-
ticast in a given state of the system. We could have
prioritised one mode of communication over another and
define the semantics accordingly. However, we decided to
stay general and refrain from resolving nondeterminism
at semantic level. Thus, we decided to nondeterministi-
cally select one enabled transition. This choice not only
abstains from dealing with scheduling issues which are
rather implementation concerns, but also simplifies the
semantics. Thus, the new semantics is

p=pV pgs, where py, is defined as:
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pgs =30.3D.\/ T (Vie, Vi, d, £) A

k
\ 3PV ATV, V), d A
J#k

t=j

v /\/\Idi

¢ = any A gP(Vi, PV) i#k,i#]

Since we decided to refrain from resolving nondeter-
minism at semantic level, we model the nondeterminism
of selection as an or-predicate. That is, we consider the
original transition relation p in Def. |2} and we define an
extension relation p as an or-predicate over the original
p and the point-to-point semantics.

Now, the extended transition relation p describes
three modes of interaction: blocking multicast, non-
blocking broadcast, and blocking unicast (or point-to-
point). In case of unicast, p relates a system state s to
its successors s’ given an exchanged tuple ¢t = (¢,d, k, 7)
where /¢ is a locality, d is a data assignment, k is the
getter locality, and 7 is the getter-predicate, obtained
by initially evaluating gP(V, PV) over the getter local
state. Namely, there exists an agent k that gets a tuple
with data d (an assignment to D) with assertion 7 (an
assignment to gP(Vy, PV)) from locality ¢ and there ex-
ists another agent j such that either (a) agent j is an
exact match of the target locality, i.e., £ = j and can
participate in the interaction (i.e., have a correspond-
ing supply transition for the tuple), or (b) the target
locality is any (i.e., any agent can match) and agent j
satisfies the get-guard. In either case, all other agents
that are different from %k and j stay idle. If no supplier
exists then the communication is blocked. That is, the
whole predicate will evaluate to false. Notice that in the
case the locality refers to the identify of an agent, the
assertion 7 is not used.

Ezample 2 Consider again the system in Example []
when extended with point-to-point communication as
follows: we consider that the locality of agent A; and A,
to be “A;” and “Ay” respectively. That is, the locality
of an agent corresponds to its unique identity. We define
the extended components of A; and As, and the rest
are the same as in Example

— gV is true

_ 764 (KEEP(role) A cLink = L A cLink’ = d(LNK)A
1 d(ID <+ “Ay") AL = “Ay7)

— T2 is false

The get-guard g7 has no restrictions. The get tran-
sition relation 7,° defines a single transition where A;
gets a communication link form the agent with locality
“As” when its local variable cLink is not assigned. More-
over, Ay sends its locality in return, i.e., d(ID <+ “A;”).
Consequently, A; assigns the value of cLink of the cor-
responding supplied link from the message d(LNK).

The supply transition relation of A; does not contain
any supply transitions, and thus it is set to false. Namely,
a get transition targeting the locality of A; is always
blocked.

The extended components of agent A, are defined
as follows:

— g% is true
— Ty is false
— Ty is (KEEP(V2) A A(LNK 5 €) A £ = “Ay”)

Conversely, the get transition relation of Ay does not
contain any get transitions, and thus it cannot match any
supply transitions of other agents. The supply transition
relation, on the other hand, defines a single transition,
where it supplies a communication link e to any agent
that issues a get transition targeting the locality of agent
As. Moreover, the supply transition does not use the
sent locality from A;.

Clearly, the composition of A; and As can enable a
get transition at system level according to the system
transition relation p. Indeed, there is a locality match
“As”, and exchanged data are aggregated in the assign-
ment d. Thus, when cLink of agent A; is not assigned
then this transition is possible.

4 Syntax of the R-CHECK Language

Based on the semantics in the previous section, we
suggest a deployment in R-CHECK. Here, we define the
syntax of the R-CHECK language as reported in Table [T}

The top-level component of R-CHECK syntax is a
system. A system is either an agent I': P or a parallel
composition of systems S1[[S2. An agent is composed
of a configuration I = (v, g', id, f) and a process P.
A configuration consists of: a local store v : V. — 2
that maps variables V' of an agent to their values Z; the
locality of an agent id, the receive predicate of an agent
g"(V,cH), and also the relabelling function f : pv — V
as explained before. We use the notation - to denote a
sequence of elements, and 3,5 to denote the sequence
resulting from concatenating 5 and §'.

For example, agent A; from Example [I] has the
initial configuration ((cLink — c,role — client),ch =
*, “A1”, pv > role), setting variable cLink to the value
c and the variable role to client, declaring that it is
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(System) Su=TI:P | S1]lS2
(Config) Iu={(y, g, id, f)
(Process) P:=a;P | P+P | repX. P

[{=@3}P | X | 0
(Action) a = Get(z,e)Q(¢,g)U |
| gle(@)U | (2)c?U

(Channels) cu=ch | x | selfw
(Locality)  £:=id | self | any

(Data) e::

Supply(Z,€)Q(£)U

=ch | d | e1Xe2

Table 1: The syntax of the R-CHECK language

listening only to the broadcast channel, identifying itself
as “A;”, and stating that the property variable pv is
named locally role.

An R-CHECK process can be an action-prefixed pro-
cess a; P, a nondeterministic choice P + P, a recursive
process rep X. P, a guarded process {7 (%)} P, and the
deadlocked process 0. We assume that processes are
closed, i.e., all occurrences of variables X,Y are bound.
In practice, we limit our syntax to non-terminating pro-
cesses., i.e., processes of the form rep X. P. Moreover,
our guarded process {m(Z)}P may constrain message
data. That is, when P is of the form a; P’ the predicate
7(Z) can both constrain state variables and incoming
message data after a substitution to the variables in Z.

An action can be a get action Get(z,€)Q(¢,g)U , a
supply action Supply(Z, €)@(¢)U, a send action glc(é)U,
or a receive action (Z)c?U.

A get action is used to collect a sequence of data
from a supplier, and substitute their values in their cor-
responding placeholders Z. The latter can be later used
to perform a sequence of updates (U) on local variables.
Moreover, if a matching supplier is found, then the get-
ter has the ability to pass a sequence of data € to that
supplier, thus providing a bidirectional information flow.
The getter can either specify the locality of the targeted
supplier £ or may accept data from any supplier that
satisfies the getter predicate g. The latter is an assertion
over the supplier local variables (up to relabelling), and
is also parametric to the getter local variables. Param-
eterisation allows the getter to dynamically scope the
communication.

A supply action is the get co-action, and it basically
supplies a sequence of data e to the getter if it either
satisfies the getter predicate or if the getter is uniquely
targeting the supplier by its locality ¢. Moreover, the
supplier may receive a sequence of data from the getter
and substitute them in their corresponding placeholders
Z, which can be used to perform a sequence of local
updates (U).

The get-supply communication mechanism provides
a specialised point-to-point communication with bidirec-
tional information flow. R-CHECK also supports group
communication through broadcast and multicast using
the send and receive actions.

A send action is used to send a message é to all
agents listening to a channel ¢ and also satisfying the
sender predicate g, which is semantically similar to the
getter predicate. Accordingly, the agent may perform a
sequence of local updates U as side effects. Note that
c serves as a place holder for a channel name which
can also be parametric to local variables to provide
a dynamic scoping mechanism. A channel c can be
a blocking multicast channel ch or the non-blocking
broadcast channel *.

Accordingly, a receive action accepts a message on
channel c if the agent listens to ¢ and satisfies the sender
predicate g. Note that an agent listens to a multicast
channel if its receive predicate g" is satisfied. We require
that agents cannot disconnect the broadcast channel.

A locality ¢ can be a supplier identity id, a self
reference that is evaluated to the identity of the agent,
or the keyword any, which denotes that any supplier
is accepted to participate in the interaction. Notice in
the semantics of R-CHECK, we limit the use of any to
attributed point-to-point interaction. That is, any is
always evaluated with respect to a getter predicate on
the potential supplier.

A data e can be a multicast channel name ch, an
immediate value d or a binary operation over data Xx.

Ezample 3 Due to the choice to concentrate on non-
terminating processes of the form rep X. P, we give
the representation of A; and A, in terms of recursive
definitions of Example [I] and Example Pl We explain
only the part of the different processes that correspond
to the two possible communication exchanges in the
example. Thus, A;’s communication includes the re-
cursive choice between the send and get rep X. (P} +
Pf). Here P§ is (pv = client)!  (join,c); X and Py is
Get(LNK, “A1”)Q(“Ay”, true)cLink = LNK; X. Namely,
P? includes the restriction on receivers whose prop-
erty variable is set to client in the guard and the referral
to broadcast in the choice of channel. It then, performs
an empty update and then loops back to X. The get
disjunct, P{, clarifies that it expects the supplier to
supply one value, which A; refers to under the name of
LNK and it gives its own locality “A;” to the supplier. It
then clarifies that the only supplier it wants to interact
with is “Ay” and that following the exchange it will
update the value supplied by the supplier into its local
variable cLink. Following the update it loops back to
X allowing the outer loop to continue the execution.
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On the other side As’s communication includes the
recursive choice between receive and supply rep X. (P +
P;™). Here Pj is {MSG = join}(MSG, LNK)*?(cLink =
LNK); X and Ps* is Supply(_, e)@(“Ay”); X. Namely, P}
restricts in the pre-condition the data in the message to
identify the message as a join message, it then clarifies
that this receive expect a message in two parts named
MSG and LNK, where the former was already used in the
guard, that this is a receive on the broadcast channel,
and that it updates its local variable cLink with the
second part of the message. Following this update it
loops back to X allowing the outer loop to continue the
execution. Similarly, P5* indicates that As is only ready
to supply to others who know its identity “A,”, that it
will not use the information the getter transfer to it (in
this case the locality “A;”), and that the data that it
supplies is the name of the channel e. Accordingly, the
update is empty and this part loops back to X.

As mentioned early, the semantics of R-CHECK is
given through the ReCiPe formalism. More precisely,
translate R-CHECK syntax initially to symbolic automata
where transitions labels encode R-CHECK commands
and states encode the control flow of processes. Once
the symbolic automaton is constructed then there is a
direct compilation to the ReCiPE formalism which serves
as the underlying semantics of R-CHECK.

Technically speaking, the behaviour of each R-CHECK
agent is represented by a first-order predicate that is
defined as a disjunction over the guarded actions of
that agent. Moreover, both guarded commands can be
represented by a disjunctive normal form predicate of
the form \/(/\; assertion;). That is, a disjunct of all
possible guarded transitions enabled in each step of a
computation. For full exposition of the semantics, the
reader is referred to [IJ.

Although this encoding is important to facilitate
efficient symbolic analysis (through BDD or SMT), it is
still quite complicated to understand and use in other
applications. The predicate semantics consider a closed
system and does not allow us to build systems incre-
mentally. The latter is important to reason about open
systems. For instance, we would like to support bidirec-
tional information flow in point-to-point communication,
while making it clear which part of the data concerns
the getter or the supplier. As seen in the definition
above, bidirectional information flow in point-to-point
is modelled by pgs, but the quantification over D makes
it implicit. Of course, one can force this in py,, but it
would defeat the purpose of predicate semantics as being
close to BDDs. Thus, in the next section, we propose
a symbolic, yet compositional semantics for R-CHECK
that describes both agents and their compositions in a
clear way. We can also single out components that are

rather hidden in the closed semantics. The proposed
semantics is intended to provide a clear understand-
ing of how different communication primitives co-exist
without interference. They also lay the basis for other
compositional verification techniques.

5 A Compositional Semantics for R-CHECK

The semantics of R-CHECK will be defined both at agent
and system level. We use the transition relation +——

to describe the local semantics of an agent. We will
build on this and define a system level semantics of an
R-CHECK system using the transition relation — .

5.1 Agent-Level Semantics

The transition relation — C (Agent x L x Agent) de-

fines the behaviour of an agent. Intuitively, this relation
states that an A € Agent executes an action exposed as
a label [ € L and evolves to another agent A’ € Agent.
The set L is partitioned into the set of positive labels L’
and the set of negative labels {(W?(J)C)é }. The latter
denotes the case when an agent is not able to participate
in message-reception (but does not block it).
The set of positive labels L’ is defined below.

L' = {#1(d)°, 72(d)°, di,do@(t,m)°, di,do@(t, )’}

These labels are used to denote the execution of the
send, receive, get, and supply actions correspondingly.
We will use A to range over elements in this set.

The positive semantics of an R-CHECK agent is re-
ported in Table 2]

A message send is defined by rule SND. The rule
states that when a send action on c is executed, both
the channel holder ¢ and the sequence of data € are
evaluated according to the local store 7 of the agent.
Moreover, the closure of the sender predicate {g}, is
computed by evaluating occurrences of local variables
according to the local store . The closure can be com-
puted compositionally, namely {g},os is computed by
initially computing the closure under f and later under
~. The message is then emitted with a concrete message
on a channel that is either broadcast or multicast. As a
result, the local store v may get updated v <= U, and
the agent is ready to execute the next step.

Thus, “A;” from Example [3| has an agent level tran-
sition

Fol : Pls }(pv:client)!((join,c))A Fol X

where I'y = ((cLink — c,role — client),ch = x, “A;”,
pv +— role) is the initial configuration of A; (mentioned
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Rev
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. A .
(’Yv gr7 Id? f>:P1 S <’Y7 grv |d7 f>P{

. X . ISUML
(v, g id, f): PL+P2—> (v, g, id, f):P]

vk w[A[d]/2]

dy 7652@(3”)’,77)5
P

(’)/7 gr7 id? f>

<,Y<—<U[d_l/i]’ gr7 |d) f> : P

. A .
<’Y? gr7 Idv f>:P2 S (77 gr7 Id? f>Pé

— X - ; SUMR
(v, " id, fY: PL+ P2 — (v, g, id, f): Py

P (v, g, id, f): P

GUARD

(v, g, id, f): {m(@)}IP —> (v, g, id, f): P’

(v, g, id, f): Prep X. P/X] »—>\> (v, g, id, f)y:P’

REP

(v, g, id, f)irepX. P> (v, g, id, f): P’

Table 2: Positive Process Semantics

earlier) and Py is given in Example [3| Notice that the
configuration of A; does not change by this transition.

A message receive is defined by rule Rcv. Namely,
an agent can receive a broadcast or a multicast message
on channel c if the agent is listening to the same channel
[l = c, it satisfies the sender predicate (up to rela-
belling, i.e., the closure {7}, holds), and listens to the
channel {g"[c/ch]},. Recall that the latter must hold
by assumption for the broadcast channel x. Moreover,
a sequence of updates Yeaujd/s] based on the message
data may be executed.

Agent A from Examples[3|has the agent-level receive
transition

F02 : PQT pv=client?((join,c))* F12 X,

where I'¢ = ((cLink — L, role — client),ch = %, “Ay”,
pv — role), I'? = {(cLink — c,role ~ client),ch =
*, “Ap”, pv — role), and PJ is given in Example Notice
that (pv = client) is satisfied by concretising pv to refer
to role and checking the value of role in I5.

A get action is defined by rule GET. An agent can
get a sequence of data dy from another agent by issuing
a get action, selecting the supplier nondeterministically
by means of satisfying the getter predicate g or de-
terministically by means of targeting its locality ¢. In
practice, the getter predicate is only evaluated when
¢ = any, and ignored otherwise. Thus, a get on a locality
¢ # any is established without considering the getter
predicate. Note that if a supplier is found, the getter
can also transfer a sequence of data dy to the selected
supplier in return, while the received data ds can be
used to update the getter local store Yeauds /3"

Agent A; from Example |3| has an agent level transi-
tion

Ay e@(“Ay” true)®
> I : X

I 01 : Pf
where I3 is as before, It = ((cLink — e, role > client), ch =
*, “A1”, pv + role), and P{ is given in Example |3| In
fact, Ay has such a transition for every possible value
of channel replacing e above. Notice that this time the
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(c#%) = (~Ag'[c/chl}~) (c#%) = (~Ag'[c/chl}~)
@O DS (2@ e
I:gld/ (e)U; P ——— TI:gld/(e)U; P I':Get(z,e)Q(L, g)U; P ———> I':Get(z,¢)Q(¢, g)U; P
(c=+) = ~({m}yor) (c#%) = (~Aglc/ch]})
(@4 bro (7@ DLy
I':(Z)c?U; P ————— I':(Z)c?U; P I':Supply(z,€)@(¢)U; P ————> I':Supply(Z,€)Q(¢)U; P
r (YER[A/Z] AN e=%) V F:PMF:P
c#Fx  (Hg[e/ch]}y)
— DwMsT Py DGrD
oty (TTDDE o o (TTDOE
I':(z)cd?U; P ———— I':(z)c'?U; P I {n(z)}P ——— I':{r(2)}P
rop O pop opip, D pop, r:Plrep X. P/x] 904 pop
@ DS 7@ e
P +P 28 rp 4+ Py Tirep X. P 222 2% Tirep X. P
(@) R
r:0 —2°¢ r:o

Table 3: Negative Process Semantics

configuration of A; is changed by this transition by
storing e in cLink.

A supply action is defined by the rules DspLY and
NspLY. The rule DsPLY is used for a deterministic point-
to-point selection where the getter targets the supplier
by its locality. In this case, only the targeted supplier is
permitted to participate. On the other hand, the rule
NsPLY is used for anonymous nondeterministic selection
where any supplier that satisfies the getter predicate it
satisfies the sender predicate (up to relabelling, i.e., the
closure {m},os holds) may participate. In both rules,
the selected supplier is able to both receive data dy and
supply data do, and may perform store updates based
on the received data. The last four rules are standard
for modelling nondeterministic, guarded, and recursive
behaviours.

Agent A, from Example [3|has the agent-level supply
transition

“Ay” ’e@( “Ay” ,true)s 9
et e 2

Iy p :
where I is as before and P is given in Example
As before, a version of this transition for every possible
identity replacing “A;” above will also be available.

Finally, according to rules SUML and SUMR, both
transitions for A; are available from Iy : (P§ + Py)
and both transitions for A are available from I} :
(P§ + P5™).

The negative semantics of an R-CHECK agent is re-
ported in Table [3] These rules specify the cases when an
agent cannot receive a broadcast or a multicast message.
They distinguish broadcast from multicast in the sense
that the former cannot be blocked while the latter can
be blocked.

It is worth noting that the negative semantics could
be abstracted by a predicate specifying when an agent
is unable to receive a message. However, adopting such
an abstraction would conflict with our objective of pro-
viding a fully compositional semantics. While negative
semantics are clearly inefficient for implementation or au-
tomated reasoning—since they introduce a large number
of transitions in the underlying LTS—they are never-
theless more intuitive. In particular, negative seman-
tics, and compositional semantics more generally, make
proofs and inductive arguments more explicit, which
directly aligns with our goal of defining a compositional
framework.

For efficient implementation, we therefore addition-
ally provide an equivalent symbolic predicate seman-
tics, closely aligned with a BDD-based representation,
thereby preserving efficiency. The intended methodology
is to use the compositional semantics for constructing
and reasoning about systems in a modular fashion, while
relying on the equivalent symbolic predicate semantics
for efficient automated analysis. Accordingly, our model
checker does not operate on the enumerative LTS, but
on its predicate-based encoding.

Rule DsND in Table [2] specifies that an agent which
can only send in its current state has the ability to
discard and stay unchanged if the message is a broadcast
(i.e., ¢ = %) or it is not listening to the channel (i.e.,
—{g"[ch/c]}, is satisfiable). Notice the implication =
in the premise. We used a negative implication because
it is more intuitive to understand in this context.

Similarly, a getter and a supplier can discard a mes-
sage if it is a broadcast or if they are not listening to
the channel as specified in rules DGET and DspPLY.
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The former rules state that unlike the broadcast,
a multicast can be blocked if the receiver is listening
to the channel but is not able to supply a matching
transition. This is to denote that the receiver can block
a multicast message until it is ready to participate. This
kind of behaviour is apparent in existing programming
languages through barrier synchronisation for instance.

A receiver agent, on the other hand, can discard a
message only in two cases, specified by rules DBRD and
DwmsST. The former states that a receiver can discard a
broadcast if it is either not currently ready to receive
a broadcast (i.e., does not have a matching broadcast
transition ¢ # ) or it does not satisfy the sender predi-
cate it satisfies the sender predicate (up to relabelling,
i.e., the closure {7},os does not hold). The latter rule,
on the other hand, specifies when a receiver can dis-
card a multicast. The only way a receiver can discard a
multicast is if it is not listening to its channel.

A guarded agent (rule DGRD) can discard a broad-
cast if its local predicate 7(Z) (possibly after substitution
to message data 7w[\[d]/Z]) is not satisfied or its process
can discard. However, a guarded agent can only discard
a multicast if its process can discard, and thus it is not
enough to not satisfying the local predicate.

The rules for nondeterminism and recursive calls
are standard. Namely, such agents can discard if all
parts of their behaviour can discard. Note that the
deadlocked agent in rule DNIL is special. Here, we allow
this agent to discard any message even without checking
the receiver predicate. The latter is important to ensure
that the parallel composition is idempotent; as otherwise
a process can block the whole system when it is blocked.
In practice, all R-CHECK processes are non-terminating
processes, i.e., all our agents are of the form I":rep X. P.

Notice that get actions cannot be discarded, and
thus are blocking in nature.

5.2 System-level semantics

We use the transition relation — C Sys x LAB x Sys
to define the behaviour of a system. This relation builds
on the agent-level transition relation to expose relevant
agent behaviour at system level. The set of system labels
LAB ranges over both positive agent-level labels, ranged
by A, and a special 7 label to denote hidden (or internal)
communication. Here, we use CZ@(E, 7T)T to denote such
label. We could have used 7 immediately without further
details, but our choice is influenced by our need to model
check this behaviour. Moreover, the semantics shows
that such label cannot propagate in the system and
interact with more than one agent.

The semantics of an R-CHECK system is reported in
Table [l Rule PSYS states that an agent can expose a A

label if its internal process can as a result of local action
execution. On the other hand, rule NSYS states that a
local discard cannot be observed at system level, and
thus it is exposed as a message reception.

Accordingly, the agent-level transitions mentioned
above are exposed here as part of Rule PSYs.

Rule SYNC states that a broadcast or a multicast
message can propagate through the system and be re-
ceived by multiple agents, and thus modelling group
communication. Rule CoML (and its symmetrical rule
CoMR) specifies that two composed system can com-
municate on a broadcast or a multicast if one of them
sends the message and the other receives it.

It follows from CoML that (po=cient)}{{join,))" isa
possible transition from I'y : (Pf+P}) || I§ : (Py+Pst).
Notice that this exposes the send in case additional
processes were available they could also participate in
this broadcast.

On the other hand, rule GETL (and its symmetri-
cal rule GETR) specifies that a get-message does not
propagate in the system, but rather interleave with
other composed systems. This is also the case for a
supply and an internal communications as specified in
rules SUPPLYL (and its symmetrical rule SUPPLYR) and
TAUL (and its symmetrical rule TAUR) respectively.

The last two rules specify the bidirectional point-to-
point communication in our formalism. That is, P-PL
(and its symmetrical rule P-PR) state that if a getter
system agrees with a supplier system to perform bidirec-
tional information exchange then both systems privately

consume the exchanged data and evolve accordingly.
“Al”,e@(“Az” ,true)T

It follows from P-PL and P-PR that
is another possible transition from I} : (P§ + PY) ||
I§ : (Py + Ps%). Notice that once the get and supply
have been “consumed” by P-PL or P-PR the only option
for other processes to interact is by not blocking this 7
transition according to rules TAUL and TAUR.
In the following lemma, we show that parallel com-
position || is a commutative monoid. We use a standard
strong bisimulation [27] to establish the properties of ||.

Lemma 1 (|| is a commutative monoid)

— || is commutative: S1]|S2 ~ S2||S1
— || is associative: (S1]|S2)]|S3 ~ S1]|(S2]|S3)
— || has an idempotent element: (S||I":0) ~ S

The proof of this lemma follows by conducting a
case analysis on the transition relation S % S’ for every
system-level label a.

In the future, we would like to prove that this se-
mantics coincides with the symbolic closed one.

Consider system-level label [;, system state s; for
all 7 > 0, an execution of an R-CHECK system is the
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Table 4: System Semantics

such that the tran-
sition (s; L, $i+1) is derivable from Table |4} and s is
the initial state.

infinite sequence sg, lg, S1,01,52 . - -

6 Model Checking LTOL with Point-to-Point
Formulas

To reason about R-CHECK systems, we have previously
introduced LTOL [I], an extension of Linear Time Tem-
poral logic (LTL) with the ability to refer and therefore
reason about agents interactions using observation de-
scriptors. See Appendix [A] for full exposition.

Here we augment LTOL observation descriptors to
be able to refer to point-to-point communication, the
full logic is here:

O = p2p | =p2p [ £ | =l | pv | =pv | ch|—ch |k |-k
|d|—~d|eO|e"O|OVO|OAO

p u=true|v|[wleVelpAp|Xe
leUp R |(O)p ][Ol

The extension of LTOL is a straightforward adjustment
of the model-checking algorithm in [I], where we in-
troduce two additional propositions to account for the
type of communication, the locality, and their respective
semantic encoding. Namely, the proposition p2p denotes
the type of the communication, ¢ denotes the targeted
locality, pv is a property identifier, ch is a channel name
(identifying the channel the current message is sent on),
k is an agent identifier (indicating the agent initiat-
ing the current interaction), and d is a data variable
(whose value is determined by the payload of the current
message).

Note that ¢ is a classical LTL in negation normal
form, with the next operator replaced by (O)¢ and
[O]p, which are predicated by observation descriptors
O. These are built from referring to the different parts
of the message, the added point-to-point descriptors
p2p, and their Boolean combinations. Send predicates
(part of messages) are interpreted as sets of possible
assignments to property identifiers pv. Thus, we include
existential 70 and universal "0 quantifiers over these
assignments. Other operators such as X, U, and R are
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the standard LTL operators “next”, “until”, and “re-
lease”. We also derive the operators Fo = true U ¢
(“eventually”) and Gy = —true R (“globally”).

For the full semantics of LTOL see [I]. Here, we
describe it informally and only introduce the formal
semantics for the new atoms.

Recall that the transition relation of a RECIPE system
relates a system state s to its successor s’ given an
exchanged tuple t = (¢,d,k,n) in the point-to-point
case, while other modes of interaction feature a message
m = (ch,d, k, ). Thus, we interpret the modified LTOL
formulas over a system computation p, a function from
natural numbers N to 27 x (M UT) where 7 is the set
of state variable propositions, M is the set of messages,
and T is the set of tuples. Note that given a point-to-
point tuple (¢,d, k, 7), we cannot single out the part of
data contributed by the getter or the setter separately.
This is because when the connection is established such
details are hidden from an external observer.

The satisfaction of ch, d, and k propositions depends
whether they exist in the message m or not. However, a
message satisfies the pv proposition, written m E pv, iff
for every assignment ¢ E m we have ¢ E pv.

The interesting cases are when we quantify over pv,
i.e., those of 30 and " O:

m £ 30 iff there is an assignment ¢ 7 such that
(ch.d,, {c}) £ O

m E 7O iff for every assignment ¢ k= 7 it holds that
(ch,d,k,{c}) E O

t = 30 iff there is an assignment ¢ 7 such that

(4,d,k,{c})=O

t = @O iff for every assignment ¢ k= 7 it holds that
(0,d, k,{c})EO

To generalise these definitions to the extended set-
ting, we use l;, called communication payload, to range
over either a tuple t; or a message m; at time i. We
replicate these definitions for communications payload,
in the obvious way, with the same definitions, except
that a ch is never satisfied for a point-to-point payload.
Negation and Boolean combinations are dealt with in
the standard way.

We give the formal semantics for the new proposi-
tions.

I p2p iff 1(0)# L and
I 0 iff 1(6)=¢ and

lE-p2p iff I(¢)=1;
LE-0 iff 1(0) # ¢

Note I(¢) = L indicates the tuple is a message ex-
changed during non-point-to-point communication. In-
tuitively, a payload [ satisfies a locality proposition £ if
its locality component £ equals ¢ and does not satisfy

¢ otherwise. The negative case also includes when [
is a message, because [(£) returns L in that case. We
assume that | is is different from all other localities.
Moreover, a payload [ satisfies p2p if and only if [(¢) = L,
namely [ is a message. Note that we can use the keywords
getter, supplier, sender to refer to the agent’s locality that
is responsible for exchange in R-CHECK, where the first
two refer to p2p and the latter for either broadcast or
multicast. The embedding of the descriptors for point-
to-point to R-CHECK is done similar to [I].

The semantics of an LTOL formula ¢ is defined for
a computation p at a time point :. We give semantics
for formulas with observation descriptors, and other
formulas are interpreted exactly as in LTL.

p>iEv iff siEv and ps E v iff s o
p>i E(O)p iff [;FO and p>iy1 F @
p>i E [Olp iff l; £ O implies p>;11 E ¢.

The temporal formula (O)y is satisfied on the com-
putation p at point ¢ if the payload [; satisfies O and ¢ is
satisfied on the suffix computation p>;;1. On the other
hand, the formula [O]y is satisfied on the computation
p at point ¢ if [; satisfying O implies that ¢ is satisfied
on the suffix computation p>;1.

7 The Superiority of Attributed Point-to-Point

In this section, we showcase the power of bidirectional
attributed point-to-point communication. To do so, we
discuss an improved version of the system described
in [2], where we only considered omnidirectional flow of
information. We also show this expressive power with re-
spect to existing anonymous communication primitives
like attributed broadcast. Indeed, despite the undeni-
able advantages of anonymous communication primi-
tives such as attributed broadcast, they still suffer from
serious modelling issues. This is more apparent when
considering modelling under open-world assumption,
which is the main motivation behind anonymous com-
munication. The latter allows agents to interact while
not being aware of the existence of each other. It also
facilitates seamless introduction of agents at run-time
(or dynamic creation) without disrupting the overall sys-
tem behaviour (though this is currently not supported
by RECiPE and R-CHECK).

Here, we consider the problem of designing protocols
with deadlock freedom and guaranteed progress. By def-
inition, a protocol imposes dependence relations among
interacting agents where some agents provide services
that other agents consume. The problem occurs when
an agent anonymously requests for a service and later
waits for a response that will never arrive, namely, when
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no provider exists. The agent gets deadlocked because
it cannot determine whether the response is delayed or
will never arrive.

We argue that our attributed point-to-point provides
an elegant solution to this problem without compro-
mising anonymity. To showcase this, we consider the
scenario of stable allocation in content delivery net-
works that was modelled in the AbC calculus [9] which
supports anonymous broadcast. The problem is about
matching equally sized sets of clients and servers based
on an order of preferences such that there are no client
and server in different matchings that both would prefer
each other rather than their current partners. We argue
that the protocol cannot be guaranteed to progress by
only relying on anonymous broadcast.

The protocol in [9] relies on an open-world assump-
tion whereby new agents can join at any time. Due to
anonymity and non-blocking of AbC broadcast, a client
broadcasts a proposal for servers to form a pair and
waits for a response. However, if the proposal is sent
before any server instance is created, then the proposal
will be lost and the client will deadlock waiting for a re-
sponse. To overcome this, the protocol in [9] introduces
a counter that starts counting for a sufficiently large
threshold, before it times out and the client proposes
again. However, it is possible (due to uncontrolled net-
work delays) that in most executions a positive response
is received after the threshold is reached. Thus, the pro-
tocol gets stuck at the stage of proposal and does not
get to progress. Here we show how to simply fix this
problem.

We consider that servers and clients use the following
data variables in interaction ID, LNK, RT, and D, where
ID carries a locality, RT carries the rating of a server,
and D carries the demand of a client. A client uses the
local variables rating, Partner, xPartner, and demand to
control its behaviour, where “rating” stores the rating of
current connected server, “Partner” and “xPartner” store
the locality of current and previous connected server;
“demand” can take “H” for high demand service and “L”
for low demand service of the client.

A generic client’s initial condition 6. is:

rating = Partner = xPartner = L,

specifying that the client is not connected to any server.
We can later create different clients with different de-
mands. The receive guard g7 is (ch = x). That is, recep-
tion is always enabled on broadcast. Now, the behaviour

of a client is reported in the R-CHECK process below:

rep X. (
(rating # “H” Arating # RT)Get((RT,ID), (id,demand))
@any|[rating := RT;xPartner := Partner; Partner := ID];

(xPartner = “17)X
+
(xPartner # “1”)Get(, )@xPartner[xPartner := “1”]; X

Intuitively, the client is either repeatedly trying to
connect to a server when it is not yet paired to a high
rating server (rating # “H”). That is, the client uses a
blocking get-command to establish connection to any
server that enhances its situation. That is, it does not ac-
cept a server with rating similar to its own (rating # RT).
If interaction is possible, the client sets rating to the
rating of the server, swaps its current partner with the
new one. Moreover, the client sends its locality and
current demand to the new server simultaneously. It
also needs to disconnect by issuing a get-command tar-
geting its previous partner if exists, as shown in the
nondeterministic choice +.

Now, a server uses the local variables rating, Partner,
demand to control its behaviour, where “rating” stores
the server rating and all other are defined as before. A
generic server’s initial condition 6 is:

demand = Partner = |,

specifying that the server is not connected to any client.
We can later create different servers with different rating
and private links. The receive guard g7 is the same as the
client’s one. Now, the behaviour of a server is reported
in the R-CHECK process below:

rep X. (
(Partner = “1”)Supply((ID, D), (rating, id))
@any[Partner = ID;demand := D]; X
+

(Partner # “1” A demand # D A demand # “L”)
Supply((ID, D), (rating, id))Q@any
[Partner = ID; demand := DJ; X

+

(true)Supply(, ) @self
[demand := Partner :=“1"]; X

Similarly, the server is either willing to supply con-
nection to a client or dissolve from current client (last
two lines). In the former cases, if the server does not
have a partner, it will accept any connection; otherwise,
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the server only accepts clients if its improves on its cur-
rent assigned demand (i.e., optimal case for servers is
to accept demands that are better than their current
ones). In that case, it supplies a tuple containing its own
rating and its locality. Moreover, it stores the identity
and the demand of the client locally.

As opposed to the protocol written in AbC' [9], this
one is very simple and compact, and thus more amend-
able to formal verification. Moreover, progress towards
stability and deadlock-freedom are guaranteed given
that the number of the clients is equal to the number
of servers, which is anyway the assumption in [9] and a
necessary condition for stability.

Moreover, this model is much more compact and
easier to understand than the one presented in the con-
ference version [2]. Thanks to the bidirectional informa-
tion flow support for anonymous point-to-point commu-
nication. In the conference version, only the supplier
(the server) was able to transfer data to the getter (the
client), and thus the client had to send its information in
a subsequent multicast to the server. The latter checks,
afterward, if it wants to stay connected; otherwise it
disconnects. This was unavoidable because there was no
other way to make the server and client agree. However,
these added communication were just a noise and made
the protocol much harder to understand. Now that we
allow bidirectional flow of information, we can avoid all
multicast transitions and establish the protocol merely
on unicast, without compromising anonymity.

We can easily create an R-CHECK system and verify
its behaviour as follows.
system = Pc(clientl,demand = “L”) || Pc(client2, demand = “H”)

|| Pc(client3,demand = “H”) || Ps(server, rating = “L”)
|| Ps(server, rating = “L”) || Ps(server, rating = “H”)

Namely, we have 3 clients, one with low demands
and two with high demands. We have also created 3
servers with only one high-rating profile. Now, we can
use the following formulas to reason individually and
collectively.

/\ (Partnery, = 1) =
kePc (1)
G|getter = k A p2p]F (Partner, # L)

FG< /\ (Partnery, <= X (Partnery))A
kePc

(2)
/\ (Partner; «<— X (Partnerj))>
J€Ps

Formula specifies that, for any client k, if k is
not paired and it attempts paring with a server, it must
always eventually get paired. Formula requires that

the protocol converges after a while, i.e., all servers and
clients stay connected to the same partners.

8 A New R-CHECK Implementation

Beyond extending R-CHECK with support for point-to-
point communication, as exposed above, we also report
on a new open-source implementationl] of R-CHECK as a
Visual Studio Code (VSCode) extension. The extension
is written in TypeScript on top of the Langium language
engineering frameworkﬂ Compared to the original im-
plementation [I], it features an improved parser with
more accurate error reporting, syntax highlighting, and
keyword autocomplete. Furthermore, it lets the user
jump to a variable declaration by clicking on any of its
references while pressing the Control (or Command) key.
Most of these features are automatically implemented
by Langium, with very little additional effort on our
part. We simply formalised the syntax of R-CHECK in a
form of EBNF supported by the framework; this comes
with the additional advantage that the EBNF is now
the single source of truth for the grammar.

As part of the extension, we implement several addi-
tional static checks to validate specifications after suc-
cessful parsing. For instance, duplicate variable names
are now automatically detected and reported to the
user. The extension also features a basic type checker,
by which we can catch a number of errors in other-
wise well-formed specifications (such as assignments to
variables of mismatching type, or malformed LTOL ob-
servations) [30]. Figure [1| contains several screenshots
that show the capabilities of our extension and how
issues with a ReCIPE specification are reported to the
user. These issues can come from parsing, from unsuc-
cessful static validation, or from breaking a type rule.
In any case, the user can see these outcomes both in the
Problems pane and as red underlines in the document.
By hovering on an underlined token, a tooltip appears
that describes the problem in detail.

The extension relies on a command-line version of the
existing R-CHECK implementation [1] to enable verifica-
tion of RECIPE systems using IC3. Specifically, whenever
the user wants to verify a system, the extension passes
a serialized AST of the ReCiPE file to the tool, which
translates it into an SMV file. Then, this file is model-
checked using NuXmv [I7]. (The SMV translation may
be inspected by running the command R-CHECK: Show
SMV Translation from the VSCode command palette.)
If a negative verdict is returned for any property, we

1 Code and setup instructions are available at https://
github.com/dsynma/rcheck.
2 https://langium.org/
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O [Extension Development Host] icons
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View Problem (\CF8)
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8- 0@

invalid-names.rcp > ...
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invalid-names.rcp ~/git/rcheck/examplesferrors (6

® Expecting token of type 'ID' but found ‘agent". r-check [Ln 5, Col 7]
® Expecting token of type 'ID' but found ‘local". r-check [Ln 6, Col 5]
® Expecting token of type 'ID' but found “true*. r-check [Ln 6, Col 33]

& ®

duplicates.rcp 9+ X

Users > lucad > git > rcheck >

Yuuiu yi\nas o xiivy

y

B % © oG ¢

guard g() := true;
10 agent P view Problem (CF8)
11 local: counter
12 init: counter ==
13
Lo 14 repeat: - (
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PROBLEMS a OUTPUT PORTS

v duplicates.rcp ~/git/rcheck (17

£ [Extension Development Host] Search

property-variables: foo :

Duplicate local variable

® Expecting token of type 'repeat’ but found “true*. r-check [Ln 6, Col 33]
® Expecting token of type 'ID' but found “agent". r-check [Ln 13, Col 10]
® Expecting token of type 'EOF' but found “agent". r-check [Ln 13, Col 10]

(%%

duplicates.rcp > @ Process
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ey ETTrEy———

int

[
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| ® Duplicate name 'ch' r-check [Ln 1, Col 19]

®
&

® Duplicate name 'msgvals' r-check [Ln 3, Col 6]
® Duplicate name 'bar' r-check [Ln 3, Col 25]

® Duplicate name 'foo' r-check [Ln 4, Col 14]

® Duplicate name 'MSG' r-check [Ln 5, Col 60]

Fig. 1: Screenshots of Visual Studio Code with the R-CHECK extension enabled, showing the outcome of unsuccessful

parsing and static checks, and type checking.

once again rely on the command-line tool to translate
the counterexample into a RECIPE execution trace, show-
ing the states of agents and their interactions through
messages. This polished counterexample is then shown
to the user in a dedicated editor tab (Figure . We are
currently working on integrating our existing interpreter
to allow interactive simulations.

9 Related Work

Point-to-point communication is a common communi-
cation mode systems use to exchange messages in a

synchronous manner. The 7-calculus [27] uses it as its
only mode of communication, but only through recon-
figurable channelled communication. There is a classical
result that other modes, like channelled broadcast, can-
not be encoded well in 7-calculus, and vice versa chan-
nelled broadcast is not enough to encode channelled
point-to-point [2I]. The m-calculus does not support
attribute-based communication either, unlike our ap-
proach.

As for attribute-based formalisms, we find approaches
such as AbC [7[I0] and AbU [28], which (as discussed
in Sect. E[) do not handle point-to-point communica-
tion and thus require encoding a protocol to enable this
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[ ] p [Extension Development Host] Search @ v 08 [D Q ED

bigger-example-3.rcp 1 ® m -
Users > lucad > git > rcheck > bigger-example-3.rcp > @ Client

11 agent Client
12 local: role : rolevals, cLink : channel, mL1ir -

% 0 & °

13 init: role ==
14 relabel:
ﬁ'> 15 cv <- role
16 receive—guard: - (chan-== %) | (chan == cLink)

17
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D@ PROBLEMS o OUTPUT PORTS DEBUG CONSOLE Filter (e.g. text, **/*ts.. W &

1]
>
X

v bigger-example-3.rcp ~/git/rcheck (1
® While validating the AstNode 'role == 1, this error is found: This comp... r-check [Ln 13, Col 16] ~
-> The types 'rolevals' and 'int' are not equal.
--> At name, rolevals and int do not match.
--> At name, int and rolevals do not match.

®
£
Fig. 2: The R-CHECK extension showing a type checking error.

@ &« O [Extension Development Host] icons [ 0% e MmBm

Verification Results X

G(!(machine-sFull))

» Full output

© o © ¢

F(machine-asgn) X

ﬂ'> #Step Changed Variables
client: state: 0, b: client, cLink: ¢, mLink: empty, role: cInt
BS:‘ client2:  state: 0, b: client, cLink: ¢, mLink: empty, role: cInt
0 machine: state: 0, asgn: FALSE, cLink: empty, gLink: g1, pLink: vmm
r\ machine2: state: 0, asgn: FALSE, cLink: empty, gLink: g1, pLink: vmm2
=@ manager: state: 0, cLink: c, fLink: g1, role: mgr, sLink: g2
\/ Supplier:  client

Command: SUPPLY@(any) ({}) [{}]

Getter: client2

Supplier:  client

Command: SUPPLY@(any) ({}) [{}]

Getter: client2
® -
Loop starts here
{‘E} » Full output
PaY A4V PN PRSI | PRpRpy AN VN [ PRI | SR SN v 4

Fig. 3: The R-CHECK extension showing a model-checking report for the RECiPE example presented in [I].

over multiple time steps. CARMA is an example of an
attribute-based approach that handles both broadcast
and unicast. It is a language for defining and reasoning
quantitatively about collective adaptive systems [25].
Like R-CHECK [4l[3], they support attribute-based com-
munication, so that communication can be established
based on attributes. However, they do not support re-
configuration based on channels. Channels are statically
known and cannot be passed at runtime. In CARMA, uni-

cast is defined over channels, guarded by predicates over
agent attributes (similar to our guards over pv). While
R-CHECK allows for similar unicast-based on predicates,
agents can also directly refer to the identity of an agent.
Such localities can be encoded as attributes in CARMA;
however, and unlike our approach, this does not guar-
antee that communication is safe from interference by
other agents, since agents can modify their attributes
maliciously.
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Instead of channelled point-to-point communication,
our approach supports purely attribute-based or locality-
based communication. This allows for a level of anonymity:
the supplier and getter do not need to know each other
or know the proper channel to communicate on, while
localities can be learned at runtime.

Another approach to modelling processes is that of
tuple spaces (e.g., [19,20]), dropping entirely channels
and using solely localities. Here, agents do not communi-
cate directly, but through retrieving and storing tuples in
tuple spaces. In these approaches, tuple insertion cannot
be blocked, and retrieval is based on predicates over the
desired tuple. Our form of unicast cannot be modelled in
these approaches, given its anonymous nature. Consider
that relying on tuple spaces makes the communication
indirect and asynchronous, while in our approach the
communication is synchronous. SCEL [20] is an example
of such an approach, allowing higher-order communi-
cation, since processes can be stored and retrieved in
tuples. However, tuple spaces can grow arbitrarily large,
which poses a challenge to model checking.

With regards to connector-based approaches such
as BIP [I6], the communication structure is defined a
priori using a set of connectors allowing a wide variety of
possible communication modes. This is an example of
an ezxogenous coordination model, which enforces a clear
separation between behavioural and communication con-
cerns. Recent work on BIP introduced reconfigurable
communication structures [I4,I5]. In keeping with the
exogenous model, reconfiguration decision are not taken
by the agents (components) but rather at a separate
network layer. R-CHECK, in turn, clearly adopts an en-
dogenous model where reconfiguration is carried out by
the agents themselves in a dynamic, possibly opportunis-
tic fashion.

10 Concluding Remarks

We have augmented ReCiPe and R-CHECK with bidi-
rectional point-to-point communication as a primitive,
beyond their original broadcast and multicast commu-
nication modes. Our focus is on raising the level of
abstraction and the feasibility of design. The idea is
that the objective of any modelling activity is to eventu-
ally reason about the design and verify its goals. Thus,
we need to provide a high-level set of primitives that
make modelling easier and produce models that are
amenable to formal verification. We have argued how
this new set of primitives enables better modelling of
multi-agent systems, through an illustrative case study
we can succinctly express in our extended language,
but more challenging for existing languages. Previously,
REeCIPE could only encode point-to-point communication

through a protocol of coordination on existing broadcast
and multicast channels, allowing for interference. With
the new primitives, point-to-point communication can
be modelled in a way that preserves the integrity of the
communication. We formally provided a compositional
semantics that specifies how the different communica-
tion modes co-exist without interference and showed
that they behave as expected. In the future, we would
like to provide a proof of correspondence between the
symbolic closed semantics and the compositional one.

We have also presented a new implementation of
R-CHECK as an extension to the Visual Studio Code
editor. This implementation improves the experience
of language users by providing syntax highlighting and
static checks to point out mistakes in the specifications,
including a simple type checker for expressions and as-
signments. As future work, we plan to improve this
extension along several directions. We might extend our
type system to perform more advanced static reasoning:
for instance, we might type commands by the type of
data they are willing to send or receive, and warn the
user about potential deadlocks if no matching receive
(or send) is present in the system. In time, we would
like to port all features from the original R-CHECK im-
plementation into the new one. This will require some
effort, as the former contains approximately 10,000 lines
of Java code.

We have recently initiated efforts to leverage R-CHECK
for correct-by-construction code generation targeting
ROS2 (the Robot Operating System). Our goal is to de-
velop a formal implementation semantics for R-CHECK,
building on approaches found in [ITL6L5].
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A LTOL: An extension of LTL

LTOL is an extension of LTL with the ability to refer and
therefore reason about agents interactions. It replaces the
next operator of LTL with the observation descriptors: possible
(O) and necessary [O], to refer to messages and the intended
set of receivers. The syntax of formulas ¢ and observation
descriptors O is as follows:

pu=v|lwleVeleAe|eUp | pRe|(O)p|[Ole
O:u=pv|-pv|ch|—ch|k|-k|d|—d|eO|e"O
lOvO|OAO

We use classic abbreviations —, <+, the usual definitions for
true and false, and the temporal abbreviations Fy = trueld ¢
(eventually), G = =F=p (globally) and oy Wy = ¢ R (¢ V
) (weak until). Furthermore we assume that all variables
are Boolean because every finite domain can be encoded by
multiple Boolean variables. For convenience we, however, use
non-Boolean variables when relating to our example.

The syntax of LTOL is presented in positive normal form.
That is, we push the negation down to atomic propositions.
We, therefore, use © to denote the dual of formula © where
O ranges over either ¢ or O. Intuitively, © is obtained from ©
by switching vV and A and by applying dual to sub formulas,
e.g., p1Ups = p1 RPz2, p1 Ap2 = P1 Vpz, pv = —pv, and
e300 = ¢"0.

Observation descriptors are built from referring to the
different parts of the observations and their Boolean com-
binations. Thus, they refer to the channel in cH, the data
variables in D, the sender k, and the predicate over property
variables in pv. These predicates are interpreted as sets of
possible assignments to property variables, and therefore we
include existential 2O and universal YO quantifiers over
these assignments.

The semantics of an observation descriptor O is defined
for an observation m = (ch, d, k, =) as follows:

m E ch’ iff ch = ch/
mEd if d(d)
mEek' ifk=Fk

m i ~d  iff ~d(d)
mE k' iffk £k

m £ —ch’ iff ch # ch’

mEpv iff for every assignment c E 7 we have c E pv
m E —pv iff exists an assignment c E 7 such that ¢ & pv
m = 70 iff exists an assignment c 7 and (ch,d, k, {c}) F O

m e7O iff for every assignment c 7 implies (ch,d, k, {c}) F O

mE O1V Oz
mE O1 A Oz

iff either mE O1 or m E O2
iff mEO; and mE O

We only comment on the semantics of the descriptors ¢20
and YO as the rest are standard propositional formulas. The
descriptor 30 requires that at least one assignment ¢ to the
common variables in the sender predicate 7 satisfies O. Dually
©70 requires that all assignments in 7 satisfy O. Using the
former, we express properties where we require that the sender
predicate has a possibility to satisfy O while using the latter
we express properties where the sender predicate can only
satisfy O. For instance, both observations (ch,d, k, pv1 V —pv2)
and (ch,d, k, pv1) satisfy e7pv; while only the latter satisfies
©"pu1. Furthermore, the observation descriptor e"false Ach =
says that a message is sent on the broadcast channel with
a false predicate. That is, the message cannot be received
by other agents. For example, the descriptor &3 (@type = t1) A
o7 (@type = t1) says that the message is intended exactly for
agents of type-1.

The semantics of €3O and ¢”O (when nested) ensures that
the outermost cancels the inner ones, e.g., 7(01 V (¢7(¢702)))
is equivalent to e3(01 V O2). Furthermore, when pv and re-
spectively —pv appear outside the scope of a quantifier (e
or 3), they are semantically equivalent to the descriptors
o"pv and respectively e3—pv. Thus, we assume that they are
written in the latter normal form.

We interpret LTOL formulas over system computations:

Definition 4 (System computation) A system computation
p is a function from natural numbers N to 2¥ x M where ¥ is
the set of state variable propositions and M = cH x 2P x K x

PV ., . . . .
22" " is the set of possible observations. That is, p includes
values for the variables in 2¥ and an observation in M at each
time instant.

We denote by s; the system state at the i-th time point
of the system computation. Moreover, we denote the suffix of
p starting with the i-th state by p>; and we use m; to denote
the observation (ch,d, k, ) in p at time point i.

The semantics of an LToL formula ¢ is defined for a com-
putation p at a time point i as follows:

p>iEv iff s;Ev and p>;E v iff s Fo;

p>iEp2Va iff p>ikE@1 or pxik p2;

p>i Ep2 Np2 iff p>iE 1 and px; F p2;

p>i E @1 Up2 iff there exists j > i s.t. p>; F @2 and,
for every i <k < j, p>i E ¥1;

p>i E @1 Ry iff for every j > i either px; o2 or,
there exists i < k < 7, p>p F @135

p>i F(O)p iff m;FO and p>iy1 F ¢;

Intuitively, the temporal formula (O)¢ is satisfied on the
computation p at point ¢ if the observation m; satisfies O
and ¢ is satisfied on the suffix computation p>;41. On the
other hand, the formula [O]y is satisfied on the computation
p at point ¢ if m; satisfying O implies that ¢ is satisfied on
the suffix computation p>;4 1. Other formulas are interpreted
exactly as in LTL.

By allowing the logic to relate to the set of targeted
robots, verifying all targeted robots separately entails the
correct “group usage” of channel A.
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