
Noname manuscript No.
(will be inserted by the editor)

A Compositional Semantics for Reconfigurable Multi-Mode
Interaction in R-CHECK

Yehia Abd Alrahman · Shaun Azzopardi · Luca Di Stefano · Nir

Piterman

Received: date / Accepted: date

Abstract Autonomous multi-agent systems use differ-

ent modes of communication to support their autonomy

and ease of interaction. In order to enable modelling

and reasoning about such systems, we need frameworks

that combine many forms of communication. R-CHECK

is a modelling, simulation, and verification environment

supporting the development of multi-agent systems, pro-

viding attributed channelled broadcast and multicast

communication. Another common communication mode

is point-to-point, wherein agents communicate with

each other directly. Capturing point-to-point through

R-CHECK’s multicast and broadcast is possible, but cum-

bersome and prone to interference. Here, we extend

R-CHECK (and its underlying formal calculus ReCiPe)

with bidirectional attributed point-to-point communi-

cation, which can be established based on identity or
properties of participants. Moreover, we provide a com-

positional semantics that clearly describes how different

modes of interaction co-exist without interference. We

also support model-checking of point-to-point interac-

tions by extending linear temporal logic with observation

descriptors related to the participants in this communi-

This work is funded by the ERC consolidator grant D-SynMA
(No. 772459) and the Swedish research council grants: SynTM
(No. 2020-03401) and VR project (No. 2020-04963).

Yehia Abd Alhraman, Nir Piterman
University of Gothenburg and Chalmers University of Tech-
nology, Sweden
E-mail: {yehia.abd.alrahman,nir.piterman}@gu.se

Luca Di Stefano
TU Wien, Institute of Computer Engineering, Treitlstraße 3,
1040 Vienna, Austria
E-mail: luca.di.stefano@tuwien.ac.at

Shaun Azzopardi
Dedaub, San Gwann, Malta
E-mail: shaun.a@dedaub.com

cation mode. We argue that these extensions simplify

the design, and demonstrate their benefits by means of

an illustrative case study.

1 Introduction

Multi-agent Systems (MAS) are some of the most in-

teresting and challenging systems to design. This is

particularly the case when tasks of the system require

interaction between agents based on mutual interest and

changing tasks. Machines operating in this way need

to create opportunistic interactions. This is possible if

agents can reconfigure their interaction interfaces and

dynamically form groups at run-time based on changes

in their context. We call such systems Reconfigurable

MAS [24,23]. We are interested in designing such sys-

tems and, due to the challenge involved, supporting

reasoning about the behaviour of designed systems to

improve their reliability and security.

MAS are often programmed using high-level lan-

guages that support domain-specific features of MAS.

For example, emergent behaviour [8,31,9], interactions [12],

intentions [18], knowledge [22], and so forth. These no-

tions are too involved to be directly encoded in plain

transition systems. Thus, we often want programming

abstractions that focus on the domain concepts, abstract

away from low-level details, and consequently reduce

the size of the model under consideration. The rationale

is that designing a system requires having the right level

of abstraction to represent its behaviour. Furthermore,

one would like to reason about the design to check that

it indeed fulfils its requirements. Model checking is a

prominent technique for such reasoning. Thus, model

checking tools that support high-level features of Recon-

figurable MAS are required to enable reasoning about

2 Y. Abd Alrahman et al.

high-level features of designs. We need to support an

intuitive description of programs, actions, protocols, re-

configuration, self-organisation, etc.

We have previously presented ReCiPe [13,12] and

r- check [1], a framework and a toolkit for design-

ing, simulating, and verifying reconfigurable multi-agent

systems. ReCiPe supported multiple modes of communi-

cation through predicated communication on broadcast

and multicast channels. Agents could use a predicated

broadcast to target only agents satisfying specific condi-

tions. They could use a predicated multicast to ensure
that all participants satisfy certain conditions. A unique

feature of this framework is its active support of reconfig-

uration. ReCiPe allows agents to connect and disconnect

from multi-cast channels during runtime. Thus, the dis-

covery of interested agents (through broadcast) and

the formation of ad-hoc groups with them (through

multicast) becomes simple and intuitive. While ReCiPe

presented a theoretical model based on transition sys-

tems and their symbolic versions, R-CHECK extended

it with a high-level modelling language. R-CHECK en-

ables reasoning about systems through simulation and

model checking. In order to reason about intentions of

senders, we extended ltl to ltol, which allows next op-

erators that are conditioned upon contents, predicates,

and senders of messages. This allows further insights

into the interactions that happen in the system to be

included in logical specifications. ltol model checking

was supported through a translation to nuXmv [17].

One of the challenges of modelling with R-CHECK

is to capture (anonymously) the existence of recipients.

Indeed, both broadcast and multicast channels allow

messages through in the case that there are no recipients.
In order to model situations in which knowledge of the

existence of others is needed, we made assumptions

about sufficiently many participants being available.

Based on this assumption, we were able to emulate

point-to-point communication through a combination
of broadcast and multicast messages. However, this was

cumbersome and prone to interference, which could

easily lead to deadlock. In addition, encoding point-to-

point communication through a protocol of coordination

that requires multiple messages, created complicated

models that were hard to understand and reason about.

In the conference paper [2], we extended R-CHECK

by supporting unidirectional attributed point-to-point

communication, where data flows only in one direction,

i.e., from the supplier to the getter. This article is an

extended and an enhanced version of [2]. There are three

new contributions with respect to [2].

Particularly, our new contributions are:

(i) we extend the theoretical model ReCiPe and its

implementation in R-CHECK by bidirectional point-

to-point communication. That is, we allow both the

getter and the supplier to exchange data during

communication. We later show in the case study

that this has a positive impact on modelling. It

majorly reduces the size of R-CHECK models that

rely on point-to-point communication. We show a

major reduction and simplification of the case study

with respect to its early implementation in [2].

(ii) we provide a formal compositional semantics for

R-CHECK and show that it behaves as expected. That

is, the semantics describes systems both at local and
distributed level, and the parallel composition is a

commutative monoid.

(iii) we develop a new open-source implementation of

R-CHECK as a Visual Studio Code (VSCode) exten-

sion, featuring improved parser and providing better

error reporting, syntax highlighting, and keyword

autocompletion. Moreover, it supports basic type-

checking.

This article is structured as follows: in Sect. 2, we

give a background on ReCiPe [13,12], the underlying

theory of R-CHECK. In Sect. 3, we augment the language

of R-CHECK with point-to-point communication and its
symbolic semantics. In Sect. 4 and Sect. 5, we formally

present the syntax and the compositional semantics

of R-CHECK. In Sect. 6 we extend the ltol logic to

allow specification of point-to-point communication. In

Sect. 7, we provide a case study to model autonomous

resource allocation, and in Sect. 8 we introduce the new
implementation of R-CHECK. Finally, we discuss related

work in Sect. 9 and report our concluding remarks in

Sect. 10.

2 Background Materials: The ReCiPe Formalism

We present background materials necessary to introduce

our language extension and its semantics.

ReCiPe [13,12] is a symbolic concurrent formalism

that serves as the underlying semantics of R-CHECK.

ReCiPe relies on (attributed-) channel communication.

Agents agree on a set of channel names ch to exchange

messages on. These messages carry data (in variables d)

specified by senders. Agents can constrain the targets

of communication by attributing the messages through

predicates, similar to AbC [8,9]. As opposed to the lat-

ter, ReCiPe supports dynamic reconfiguration by letting

agents disconnect from channels. Moreover, ReCiPe sup-

ports two kinds of communication, channelled-broadcast

and channelled-multicast. In channelled-broadcast the

communication is non-blocking, that is, the communi-

cation can still go through if a targeted receiver is not

ready to engage. Contrarily, in multicast, the communi-

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 3

cation is blocking until all targeted receivers are willing

to accept the message and engage in the communica-

tion. Thus, the set of channels ch includes a channel

used exclusively for broadcast, ⋆, which agents cannot

disconnect from.

Usually, broadcast is used for service discovery: for

instance, when agents are unaware of the existence of

each other, and want to be discovered or to establish

links for further interaction. On the other hand, multi-

cast can capture a more structured interaction where

agents have dedicated links to interact on. The recon-
figuration of interaction interfaces in ReCiPe makes it

possible to integrate the two ways of communication

in a meaningful way. That is, agents may start with a

flat communication structure and use broadcast to dis-

cover others. With ReCiPe’s channel passing, agents can

dynamically build dedicated communication structures

based on channel references they exchange.

In order to target a subset of agents in an interaction,

sending agents rely on a set of property identifiers pv,

i.e., identifiers that senders use to specify properties

required of targeted receivers. For instance, agent k

may specify that it wants to communicate on channel

a with all agents that listen to a and satisfy property

BatteryLevel ≥ 30%. In other words, property identifiers

are used by agents to indirectly specify constraints on the

targeted receivers in a similar manner to the attribute-

based paradigm [8,9].

Each agent has a way to relate property identifiers

to its local state through a re-labelling function f . We

have generalised this function in R-CHECK to deal with

more sophisticated expressions. Thus, agents specify

properties anonymously using these identifiers, which
are later translated to the corresponding receiver’s local

state. Messages are then only delivered to receivers that

satisfy the property after re-labelling.

Formally, an agent can be defined symbolically in

terms of a Discrete System (DS) [29]. A DS can be
thought of as an encoding of a transition system through

Boolean predicates over a set of system variables. To

encode the current state and the next state of the sys-

tem, the two copies of system variables are used. The

assignments to the original copy of variables, say V , are

used to denote the current state of the system. Moreover,

a primed copy V ′ is used where its assignments denote

the next state of the system after command execution.

In this way, the satisfaction of a Boolean predicate over

the assignments of V and V ′ denotes the execution of

system event.

More precisely, an agent is defined as follows:

Definition 1 (Agent) An agent is a tuple

A = ⟨V, f, gs, gr, T s, T r, θ⟩,
• V is a finite set of typed local variables.

• f : pv→ V is a function, associating property identi-

fiers to local variables.

• gs ⊆ V × ch × d × pv is a send guard specifying

the property of the targeted receivers. Based on the

current assignments of V, ch, and d, gs simplifies to

a predicate over pv and it is evaluated over the state

of every receiver j by applying fj .

• gr ⊆ V×ch is a receive guard describing the connect-

edness of an agent to a channel ch. We let gr(v, ⋆)

= true for every v, i.e., every agent is always connected

to the broadcast channel.

• T s ⊆ V × V ′ × d × ch and T r ⊆ V × V ′ × d ×
ch are assertions describing, respectively, the send

and receive transition relations. We assume that an

agent is broadcast input-enabled, i.e., ∀v,d ∃v′ s.t.
T r(v, v′,d, ⋆) holds.

• θ is an assertion on V describing the initialization of

the agent.

In this definition, a state of an agent s is an assign-

ment to the agent’s local variables V, i.e., for v ∈ V

if Dom(v) is the domain of v, then s is an element in∏
v∈V Dom(v). In case that all variables range over a

finite domain then the number of states is finite. A state

is initial if its assignment to V satisfies θ. Note that

A is a discrete system, and thus we use the set V ′ to

denote the primed copy of V . That is, V ′ stores the

next assignment to V . Moreover, we use Id to denote
the assertion

∧
v∈V v = v′. That is, V is kept unchanged.

We use d to denote an assignment to the data variables

d. We also abuse the notation and use f for the assertion∧
pv∈pv pv = f(pv).

Agents exchange messages of the formm = (ch,d, i, π),

where ch is the channel m is sent on, d the data it car-

ries, i the sender identity (we assume a unique identifier

for each agent), and π the assertion specifying the prop-
erty of targeted receivers. The predicate π is obtained

by grounding the sender’s send guard on the sender’s

current state, used channel ch, and exchanged data d.

Send transition relations T s characterise what mes-

sages may be sent, with one message sent at each point

in time, whereas receive transition relations T r charac-

terise the reaction of a receiving agent to a message.

We use keep(X) to denote that a set of variables

X is not changed by a transition (either send or re-

ceive). That is, keep(X) is equivalent to the assertion∧
x∈X x = x′. Note that Id = keep(V).

A set of agents agreeing on property identifiers pv,

data variables d, and channels ch defines a system. We

give the semantics of systems in terms of predicates to

facilitate efficient symbolic analysis (through BDD or

SMT). We use
⊎

for disjoint union.

4 Y. Abd Alrahman et al.

Formally, a ReCiPe system is also a DS, defined as

follows:

Definition 2 (System) Given a set {Ai}i of agents, a
system is S = ⟨V , ρ, θ⟩, where V =

⊎
i

Vi, a state of

the system “s” is in
∏

i

∏
v∈Vi

Dom(v) and the initial

assertion θ =
∧
i

θi. The transition relation ρ of S is as

follows:

ρ = ∃ch. ∃d.
∨
k

T s
k (Vk, V ′k,d, ch)∧

∧
j ̸=k

∃pv.fj ∧


grj (Vj , ch) ∧ gsk(Vk, ch,d, pv)∧

T r
j (Vj , V ′j ,d, ch)

∨ ¬grj (Vj , ch) ∧ Idj

∨ ¬gsk(Vk, ch,d, pv) ∧ ch = ⋆ ∧ Idj




The transition relation ρ describes two modes of

interactions: blocking multicast and non-blocking broad-

cast. Formally, ρ relates a system state s to its successors
s′ given a message m = (ch,d, k, π). Namely, there ex-

ists an agent k that sends a message with data d (an

assignment to d), on channel ch, with assertion π (ob-

tained as gsk(vk, ch,d, ·)) on channel ch and all other

agents are either (a) connected to channel ch, satisfy the

send predicate π, and participate in the interaction (i.e.,

have a corresponding receive transition for the message),

(b) not connected and idle, or (c) do not satisfy the send

predicate of a broadcast and idle. That is, the agents sat-

isfying π (translated to their local state by the conjunct
∃pv.fj) and connected to channel ch (i.e., grj (s

j , ch))

get the message and perform a receive transition. As a

result of interaction, the state variables of the sender

and these receivers might be updated. The agents that

are not connected to the channel (i.e., ¬grj (sj , ch)) do
not participate in the interaction and stay still. In case

of broadcast, namely when sending on ⋆, agents are

always connected and the set of receivers not satisfying

π (translated again as above) stay still. Thus, a blocking

multicast arises when a sender is blocked until all con-

nected agents satisfy ∃pv.fj ∧ π. The relation ensures

that, when sending on a channel different from ⋆, the

set of receivers is the full set of connected agents. On

the broadcast channel agents not satisfying the send

predicate do not block the sender.

Example 1 Consider a ReCiPe system that is composed

of two agents A1 and A2, agreeing on the set of channels

ch = {⋆, c}, the data variables d = {msg, lnk}, and the

property variables pv = {pv}. Let us also assume they

also agree on the existence of an enumerated type enum

that contains at least an element named client. Here, we
use non-Boolean variables to simplify the presentation.

A1 is defined as follows:

– V1 = {cLink : channel, role : enum}
– f1 = {pv 7→ role}
– gs1 is (ch = ⋆ ∧ pv = client)
– gr1 is true
– T s

1 is (keep(V1)∧d(msg 7→ join, lnk 7→ c) ∧ ch = ⋆)

– T r
1 is keep(V1)

– θ1 is (cLink = c ∧ role = client)

That is, A1 has two local variables cLink of channel

type and role of enum type. Moreover, A1 relabels the

property identifier pv locally as the value of its local

variable role. The send predicate gs1 indicates that A1

intends to interact on the broadcast channel ⋆ with

agents that satisfy the property pv = client according to

their local relabelling. The receive predicate gr1 indicates
that A1 is always enabled to receive.

Behaviour-wise, A1 can send a message join with

a link c on the broadcast channel ⋆. Moreover, A1 is

not willing to receive any messages. Initially, the local

variables of A1 are set such that cLink is assigned link c
and role is a client.

A2 is defined as follows:

– V2 = {cLink : channel, role : enum}
– f2 = {pv 7→ role}
– gs2 is false
– gr2 is true
– T s

2 is false

– T r
2 is

(cLink = ⊥ ∧ cLink′ = d(lnk) ∧ keep(role)∧
d(msg 7→ join) ∧ ch = ⋆)

– θ2 is (cLink = ⊥ ∧ role = client)

Clearly, A2 only differs from A1 with respect to the

send guard, the send transition relation (which are set

to false), the receive transition relation (which indicates

that A2 is willing to receive a message named join and

stores the value of lnk of the message in cLink) and the

initial condition where cLink is set to ⊥. By applying

Def. 2, we have that the composition of A1 and A2

indeed forms a ReCiPe system (where local variables of

A1 and A2 are joined with disjoint union to account for

similar local naming).

Now, starting from the initial conditions of both

agents, we apply the system transition relation ρ. Clearly,

there exist only one message that satisfies ρ, namely the

message on channel ⋆ and data variables assigned as

follows {msg 7→ join, lnk 7→ c}, where A1 is the sender

(i.e., its send transition relation T s
1 is satisfied). More-

over, there is only one receiver A2 which is connected to

⋆ (i.e., gr2 is satisfied), its receive transition relation T r
2

is satisfied with respect to the same message, and the

send guard gs1 is (ch = ⋆ ∧ pv = client) in conjunction

to local relabelling of A2 (i.e., pv = role) is satisfiable.
Thus, ρ holds and as a result A2 sets its local cLink

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 5

variable to c that is communicated in the message. In

the next cycle, ρ is checked again based on the new

updated states.

3 Extending ReCiPe with Attributed

Point-to-Point Communication

We propose a Point-to-Point communication extension

to R-CHECK. However, to be able to support this, we
first need to extend the semantic framework, i.e., ReCiPe.

Notice that we rely on ReCiPe as the underlying semantic

framework for R-CHECK.

3.1 ReCiPe with Point-to-Point Communication.

There are several ways to support Point-to-Point Com-

munication in the literature. For instance, we can use

the complementary send/receive communication as in π-
calculus [26] or the tuple-space approach as in Klaim [19].

In our case, we decided to use a specialised attributed

Point-to-Point Communication that takes inspiration

from the tuple-space approach while keeping models
amenable to formal verification. Note that a tuple-space

approach, where agents are allowed to put/get tuples

to/from a shared/private tuple-space, can imply higher-

order communication. A tuple can be simply the code

of an agent. Moreover, a tuple-space is usually modelled

as a parallel composition of existing tuples. This means
that the size of the tuple space can grow uncontrollably,

and thus lead to verification problems.

Our approach consists of eliminating the verification-

problematic tuple space, and encoding it as parametric

supply-transitions in the code of each agent. Namely, we

provide two primitives: get and supply. The get allows

an agent to nondeterministically get data from another

agent based on either satisfaction of a predicate gp or on

the identity of the agent (its locality). That is, an agent

can ask for data from a potential supplier by either sup-

plying the name of the targeted agent (i.e., its locality

ℓ) or predicating on the targeted agent’s state. Instead

of creating a private tuple space for each agent, we pro-

vide local state-parametric supply-transitions for agents

willing to supply data to others. Namely, a supplier is

another agent with a matching supply transition. Note

that matching here can be attributed (i.e., based on

predicate satisfaction) or directed (i.e., based on named

locality). At a system level, the names (localities) that

compose the system are known. We introduce a reserved

word “any” to denote a wild card over the localities in

the system. Thus, when agents refer to localities they

can be either from the set of names of agents or the

keyword “any”. Formally, we extend Def. 1 as follows.

Definition 3 (Poin-to-Point Extended Agent) An

agent is a tupleA = ⟨V, f, gs, gr, gp, T s, T r, T G, T S, θ⟩,
where:

• gp ⊆ V × pv is a get-guard specifying the property of

the targeted supplier. Similar to send guards, the get-

guard gp is evaluated based on the current evaluation

of V of the getter to a predicate over pv and it is

evaluated over the state of one supplier j by applying

fj .

• T G ⊆ V × V ′ × d× ℓ is an assertion describing the

get-transition relation. Namely, given the current as-

signment to local variables V , the get-transition re-

lation specifies the data d the getter is interested in,

from what locality ℓ, and the updates to local vari-

ables V ′ if the transition is executed. As mentioned

ℓ ranges over the names of agents in the system and

“any”.
• T S ⊆ V × V ′ × d× ℓ is an assertion describing the

supply transition relation. Similarly, the supply tran-

sition relation specifies the data that the supplier is

willing to provide given that the assertion over V , V ′,

and ℓ is satisfied.

• all other components are defined as before in Def. 1

Now, we are ready to define a ReCiPe system and

its semantics. The construction of system is exactly as

reported in Def. 2. The only thing that substantially
changes is the system-level semantics. Our goal is to

provide a well-behaved predicate semantics for point-to-

point communication while co-existing with the original

broadcast and multicast semantics.

The main question that we need to answer is what

happens when a point-to-point communication transi-

tion is concurrently enabled with a broadcast or mul-

ticast in a given state of the system. We could have

prioritised one mode of communication over another and

define the semantics accordingly. However, we decided to

stay general and refrain from resolving nondeterminism

at semantic level. Thus, we decided to nondeterministi-

cally select one enabled transition. This choice not only

abstains from dealing with scheduling issues which are

rather implementation concerns, but also simplifies the

semantics. Thus, the new semantics is

ρ̂ = ρ ∨ ρgs, where ρgs is defined as:

6 Y. Abd Alrahman et al.

ρgs =∃ℓ.∃d.
∨
k

T G
k (Vk, V

′
k,d, ℓ) ∧∨

j ̸=k

∃pv.fj ∧ T S
j (Vj , V

′
j ,d, ℓ)∧ℓ = j

∨
ℓ = any ∧ gp(Vk,pv)

 ∧ ∧
i ̸=k,i ̸=j

Idi

Since we decided to refrain from resolving nondeter-

minism at semantic level, we model the nondeterminism

of selection as an or-predicate. That is, we consider the

original transition relation ρ in Def. 2, and we define an

extension relation ρ̂ as an or-predicate over the original

ρ and the point-to-point semantics.

Now, the extended transition relation ρ̂ describes

three modes of interaction: blocking multicast, non-
blocking broadcast, and blocking unicast (or point-to-

point). In case of unicast, ρ̂ relates a system state s to

its successors s′ given an exchanged tuple t = (ℓ,d, k, π)

where ℓ is a locality, d is a data assignment, k is the
getter locality, and π is the getter-predicate, obtained

by initially evaluating gp(Vk,pv) over the getter local

state. Namely, there exists an agent k that gets a tuple

with data d (an assignment to d) with assertion π (an

assignment to gp(Vk,pv)) from locality ℓ and there ex-

ists another agent j such that either (a) agent j is an

exact match of the target locality, i.e., ℓ = j and can

participate in the interaction (i.e., have a correspond-

ing supply transition for the tuple), or (b) the target

locality is any (i.e., any agent can match) and agent j

satisfies the get-guard. In either case, all other agents

that are different from k and j stay idle. If no supplier

exists then the communication is blocked. That is, the

whole predicate will evaluate to false. Notice that in the

case the locality refers to the identify of an agent, the

assertion π is not used.

Example 2 Consider again the system in Example 1,

when extended with point-to-point communication as

follows: we consider that the locality of agent A1 and A2

to be “A1” and “A2” respectively. That is, the locality

of an agent corresponds to its unique identity. We define

the extended components of A1 and A2, and the rest

are the same as in Example 1.

– gp1 is true

– T G
1 is

(keep(role) ∧ cLink = ⊥ ∧ cLink′ = d(lnk)∧
d(id← [“A1”) ∧ ℓ = “A2”)

– T S
1 is false

The get-guard gp1 has no restrictions. The get tran-

sition relation T G
1 defines a single transition where A1

gets a communication link form the agent with locality

“A2” when its local variable cLink is not assigned. More-

over, A1 sends its locality in return, i.e., d(id← [“A1”).

Consequently, A1 assigns the value of cLink of the cor-

responding supplied link from the message d(lnk).

The supply transition relation of A1 does not contain

any supply transitions, and thus it is set to false. Namely,

a get transition targeting the locality of A1 is always
blocked.

The extended components of agent A2 are defined

as follows:

– gp2 is true
– T G

2 is false
– T S

2 is (keep(V2) ∧ d(lnk 7→ e) ∧ ℓ = “A2”)

Conversely, the get transition relation of A2 does not

contain any get transitions, and thus it cannot match any

supply transitions of other agents. The supply transition

relation, on the other hand, defines a single transition,
where it supplies a communication link e to any agent

that issues a get transition targeting the locality of agent

A2. Moreover, the supply transition does not use the

sent locality from A1.

Clearly, the composition of A1 and A2 can enable a

get transition at system level according to the system

transition relation ρ̂. Indeed, there is a locality match

“A2”, and exchanged data are aggregated in the assign-

ment d. Thus, when cLink of agent A1 is not assigned

then this transition is possible.

4 Syntax of the R-CHECK Language

Based on the semantics in the previous section, we

suggest a deployment in R-CHECK. Here, we define the

syntax of the R-CHECK language as reported in Table 1.

The top-level component of R-CHECK syntax is a

system. A system is either an agent Γ :P or a parallel

composition of systems S1∥S2. An agent is composed

of a configuration Γ = ⟨γ, gr, id, f⟩ and a process P .

A configuration consists of: a local store γ : V → D
that maps variables V of an agent to their values D ; the

locality of an agent id, the receive predicate of an agent

gr(V,ch), and also the relabelling function f : pv→ V

as explained before. We use the notation .̃ to denote a

sequence of elements, and s̃,s̃′ to denote the sequence
resulting from concatenating s̃ and s̃′.

For example, agent A1 from Example 1 has the

initial configuration ⟨(cLink 7→ c, role 7→ client), ch =

⋆, “A1”, pv 7→ role⟩, setting variable cLink to the value

c and the variable role to client, declaring that it is

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 7

(System) S ::= Γ :P | S1 || S2

(Config) Γ ::= ⟨γ, gr, id, f⟩

(Process) P ::= a;P | P + P | rep X. P

| {π(x̃)}P | X | 0

(Action) a ::= Get(x̃, ẽ)@(ℓ, g)U | Supply(x̃, ẽ)@(ℓ)U

| g!c(ẽ)U | (x̃)c?U

(Channels) c ::= ch | ⋆ | self.v
(Locality) ℓ ::= id | self | any

(Data) e ::= ch | d | e1 × e2

Table 1: The syntax of the R-CHECK language

listening only to the broadcast channel, identifying itself

as “A1”, and stating that the property variable pv is

named locally role.

An R-CHECK process can be an action-prefixed pro-

cess a;P , a nondeterministic choice P + P , a recursive
process rep X. P , a guarded process {π(x̃)}P , and the

deadlocked process 0. We assume that processes are

closed, i.e., all occurrences of variables X,Y are bound.

In practice, we limit our syntax to non-terminating pro-

cesses., i.e., processes of the form rep X. P . Moreover,

our guarded process {π(x̃)}P may constrain message

data. That is, when P is of the form a;P ′ the predicate

π(x̃) can both constrain state variables and incoming

message data after a substitution to the variables in x̃.

An action can be a get action Get(x̃, ẽ)@(ℓ, g)U , a

supply action Supply(x̃, ẽ)@(ℓ)U, a send action g!c(ẽ)U,
or a receive action (x̃)c?U.

A get action is used to collect a sequence of data

from a supplier, and substitute their values in their cor-

responding placeholders x̃. The latter can be later used

to perform a sequence of updates (U) on local variables.

Moreover, if a matching supplier is found, then the get-

ter has the ability to pass a sequence of data ẽ to that

supplier, thus providing a bidirectional information flow.

The getter can either specify the locality of the targeted

supplier ℓ or may accept data from any supplier that

satisfies the getter predicate g. The latter is an assertion

over the supplier local variables (up to relabelling), and

is also parametric to the getter local variables. Param-

eterisation allows the getter to dynamically scope the

communication.

A supply action is the get co-action, and it basically

supplies a sequence of data ẽ to the getter if it either

satisfies the getter predicate or if the getter is uniquely

targeting the supplier by its locality ℓ. Moreover, the

supplier may receive a sequence of data from the getter

and substitute them in their corresponding placeholders

x̃, which can be used to perform a sequence of local

updates (U).

The get-supply communication mechanism provides

a specialised point-to-point communication with bidirec-

tional information flow. R-CHECK also supports group

communication through broadcast and multicast using

the send and receive actions.

A send action is used to send a message ẽ to all

agents listening to a channel c and also satisfying the

sender predicate g, which is semantically similar to the

getter predicate. Accordingly, the agent may perform a

sequence of local updates U as side effects. Note that

c serves as a place holder for a channel name which

can also be parametric to local variables to provide

a dynamic scoping mechanism. A channel c can be
a blocking multicast channel ch or the non-blocking

broadcast channel ⋆.

Accordingly, a receive action accepts a message on

channel c if the agent listens to c and satisfies the sender

predicate g. Note that an agent listens to a multicast

channel if its receive predicate gr is satisfied. We require

that agents cannot disconnect the broadcast channel.

A locality ℓ can be a supplier identity id, a self
reference that is evaluated to the identity of the agent,

or the keyword any, which denotes that any supplier

is accepted to participate in the interaction. Notice in

the semantics of R-CHECK, we limit the use of any to

attributed point-to-point interaction. That is, any is

always evaluated with respect to a getter predicate on

the potential supplier.

A data e can be a multicast channel name ch, an

immediate value d or a binary operation over data ×.

Example 3 Due to the choice to concentrate on non-

terminating processes of the form rep X. P , we give

the representation of A1 and A2 in terms of recursive

definitions of Example 1 and Example 2. We explain

only the part of the different processes that correspond

to the two possible communication exchanges in the

example. Thus, A1’s communication includes the re-

cursive choice between the send and get rep X. (P s
1 +

P g
1). Here P s

1 is (pv = client)! ⋆ (join, c);X and P g
2 is

Get(lnk, “A1”)@(“A2”, true)cLink = lnk;X. Namely,

P s
1 includes the restriction on receivers whose prop-

erty variable is set to client in the guard and the referral

to broadcast in the choice of channel. It then, performs

an empty update and then loops back to X. The get

disjunct, P g
1 , clarifies that it expects the supplier to

supply one value, which A1 refers to under the name of

lnk and it gives its own locality “A1” to the supplier. It

then clarifies that the only supplier it wants to interact

with is “A2” and that following the exchange it will

update the value supplied by the supplier into its local

variable cLink. Following the update it loops back to

X allowing the outer loop to continue the execution.

8 Y. Abd Alrahman et al.

On the other side A2’s communication includes the

recursive choice between receive and supply rep X. (P r
2 +

P su
2). Here P r

2 is {msg = join}(msg, lnk)⋆?(cLink =

lnk);X and P su
2 is Supply(, e)@(“A2”);X. Namely, P r

2

restricts in the pre-condition the data in the message to

identify the message as a join message, it then clarifies

that this receive expect a message in two parts named

msg and lnk, where the former was already used in the

guard, that this is a receive on the broadcast channel,

and that it updates its local variable cLink with the

second part of the message. Following this update it
loops back to X allowing the outer loop to continue the

execution. Similarly, P su
2 indicates that A2 is only ready

to supply to others who know its identity “A2”, that it

will not use the information the getter transfer to it (in

this case the locality “A1”), and that the data that it

supplies is the name of the channel e. Accordingly, the
update is empty and this part loops back to X.

As mentioned early, the semantics of R-CHECK is
given through the ReCiPe formalism. More precisely,

translate R-CHECK syntax initially to symbolic automata

where transitions labels encode R-CHECK commands

and states encode the control flow of processes. Once

the symbolic automaton is constructed then there is a

direct compilation to the ReCiPe formalism which serves

as the underlying semantics of R-CHECK.

Technically speaking, the behaviour of each R-CHECK

agent is represented by a first-order predicate that is

defined as a disjunction over the guarded actions of

that agent. Moreover, both guarded commands can be

represented by a disjunctive normal form predicate of

the form
∨
(
∧

j assertionj). That is, a disjunct of all

possible guarded transitions enabled in each step of a

computation. For full exposition of the semantics, the

reader is referred to [1].

Although this encoding is important to facilitate

efficient symbolic analysis (through BDD or SMT), it is

still quite complicated to understand and use in other

applications. The predicate semantics consider a closed

system and does not allow us to build systems incre-

mentally. The latter is important to reason about open

systems. For instance, we would like to support bidirec-

tional information flow in point-to-point communication,

while making it clear which part of the data concerns

the getter or the supplier. As seen in the definition

above, bidirectional information flow in point-to-point

is modelled by ρgs, but the quantification over d makes

it implicit. Of course, one can force this in ρgs, but it

would defeat the purpose of predicate semantics as being

close to BDDs. Thus, in the next section, we propose

a symbolic, yet compositional semantics for R-CHECK

that describes both agents and their compositions in a

clear way. We can also single out components that are

rather hidden in the closed semantics. The proposed

semantics is intended to provide a clear understand-

ing of how different communication primitives co-exist

without interference. They also lay the basis for other

compositional verification techniques.

5 A Compositional Semantics for R-CHECK

The semantics of R-CHECK will be defined both at agent

and system level. We use the transition relation -

to describe the local semantics of an agent. We will

build on this and define a system level semantics of an

R-CHECK system using the transition relation −→ .

5.1 Agent-Level Semantics

The transition relation - ⊆ (Agent × L ×Agent) de-
fines the behaviour of an agent. Intuitively, this relation

states that an A ∈ Agent executes an action exposed as

a label l ∈ L and evolves to another agent A′ ∈ Agent.
The set L is partitioned into the set of positive labels L′

and the set of negative labels {(π?(d̃)
c
) }. The latter

denotes the case when an agent is not able to participate
in message-reception (but does not block it).

The set of positive labels L′ is defined below.

L′ = {π!(d̃)
c
, π?(d̃)

c
, d̃1, d̃2@(ℓ, π)

G
, d̃1, d̃2@(ℓ, π)

S
}

These labels are used to denote the execution of the

send, receive, get, and supply actions correspondingly.

We will use λ to range over elements in this set.

The positive semantics of an R-CHECK agent is re-

ported in Table 2.

A message send is defined by rule Snd. The rule

states that when a send action on c is executed, both

the channel holder c and the sequence of data ẽ are

evaluated according to the local store γ of the agent.

Moreover, the closure of the sender predicate {g}γ is

computed by evaluating occurrences of local variables

according to the local store γ. The closure can be com-

puted compositionally, namely {g}γ◦f is computed by

initially computing the closure under f and later under

γ. The message is then emitted with a concrete message

on a channel that is either broadcast or multicast. As a

result, the local store γ may get updated γ ← [U, and
the agent is ready to execute the next step.

Thus, “A1” from Example 3 has an agent level tran-

sition

Γ 1
0 : P s

1

(pv=client)!((join,c))⋆- Γ 1
0 : X

where Γ 1
0 = ⟨(cLink 7→ c, role 7→ client), ch = ⋆, “A1”,

pv 7→ role⟩ is the initial configuration of A1 (mentioned

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 9

JẽKγ = d̃ JcKγ = c′ {g}γ = π

⟨γ, gr, id, f⟩ : g!c(ẽ)U;P π!(d̃)
c′

- ⟨γ← [U, gr, id, f⟩ : P
Snd

Jc′Kγ = c {π}γ◦f {gr[c/ch]}γ

⟨γ, gr, id, f⟩ : (x̃)c′?U;P π?(d̃)
c

- ⟨γ← [U[d̃/x̃], gr, id, f⟩ : P
Rcv

JẽKγ = d̃1 {g}γ = π

⟨γ, gr, id, f⟩ : Get(x̃, ẽ)@(ℓ, g)U;P
d̃1,d̃2@(ℓ,π)

G

- ⟨γ← [U[d̃2/x̃]
, gr, id, f⟩ : P

Get

ℓ = self JẽKγ = d̃2

⟨γ, gr, id, f⟩ : Supply(x̃, ẽ)@(ℓ)U;P
d̃1,d̃2@(id,π)

S

- ⟨γ← [U[d̃1/x̃]
, gr, id, f⟩ : P

Dsply

{π}γ◦f JẽKγ = d̃2

⟨γ, gr, id, f⟩ : Supply(x̃, ẽ)@(any)U;P
d̃1,d̃2@(any,π)

S

- ⟨γ← [U[d̃1/x̃]
, gr, id, f⟩ : P

Nsply

⟨γ, gr, id, f⟩ : P1
λ- ⟨γ, gr, id, f⟩ : P ′1

⟨γ, gr, id, f⟩ : P1 + P2
λ- ⟨γ, gr, id, f⟩ : P ′1

sumL

⟨γ, gr, id, f⟩ : P2
λ- ⟨γ, gr, id, f⟩ : P ′2

⟨γ, gr, id, f⟩ : P1 + P2
λ- ⟨γ, gr, id, f⟩ : P ′2

sumR

γ ⊨ π[λ[d̃]/x̃] ⟨γ, gr, id, f⟩ : P λ- ⟨γ, gr, id, f⟩ : P ′

⟨γ, gr, id, f⟩ : {π(x̃)}P λ- ⟨γ, gr, id, f⟩ : P ′
Guard

⟨γ, gr, id, f⟩ : P [rep X. P/X]
λ- ⟨γ, gr, id, f⟩ : P ′

⟨γ, gr, id, f⟩ : rep X. P
λ- ⟨γ, gr, id, f⟩ : P ′

rep

Table 2: Positive Process Semantics

earlier) and P s
1 is given in Example 3. Notice that the

configuration of A1 does not change by this transition.

A message receive is defined by rule Rcv. Namely,

an agent can receive a broadcast or a multicast message

on channel c if the agent is listening to the same channel

Jc′Kγ = c, it satisfies the sender predicate (up to rela-

belling, i.e., the closure {π}γ◦f holds), and listens to the

channel {gr[c/ch]}γ . Recall that the latter must hold

by assumption for the broadcast channel ⋆. Moreover,

a sequence of updates γ←[U[d̃/x̃] based on the message

data may be executed.

Agent A2 from Examples 3 has the agent-level receive

transition

Γ 2
0 : P r

2

pv=client?((join,c))⋆- Γ 2
1 : X,

where Γ 2
0 = ⟨(cLink 7→ ⊥, role 7→ client), ch = ⋆, “A2”,

pv 7→ role⟩, Γ 2
0 = ⟨(cLink 7→ c, role 7→ client), ch =

⋆, “A2”, pv 7→ role⟩, and P r
2 is given in Example 3. Notice

that (pv = client) is satisfied by concretising pv to refer

to role and checking the value of role in Γ 2
0 .

A get action is defined by rule Get. An agent can

get a sequence of data d̃2 from another agent by issuing

a get action, selecting the supplier nondeterministically

by means of satisfying the getter predicate g or de-

terministically by means of targeting its locality ℓ. In

practice, the getter predicate is only evaluated when

ℓ = any, and ignored otherwise. Thus, a get on a locality

ℓ ≠ any is established without considering the getter

predicate. Note that if a supplier is found, the getter

can also transfer a sequence of data d̃1 to the selected

supplier in return, while the received data d̃2 can be

used to update the getter local store γ← [U[d̃2/x̃]
.

Agent A1 from Example 3 has an agent level transi-

tion

Γ 1
0 : P g

1

“A1”,e@(“A2”,true)
G

- Γ 1
1 : X

where Γ 1
0 is as before, Γ 1

1 = ⟨(cLink 7→ e, role 7→ client), ch =

⋆, “A1”, pv 7→ role⟩, and P g
1 is given in Example 3. In

fact, A1 has such a transition for every possible value

of channel replacing e above. Notice that this time the

10 Y. Abd Alrahman et al.

(c ̸= ⋆) =⇒ (¬{gr[c/ch]}γ)

Γ :g!c′(ẽ)U;P
(π?(d̃)

c
) - Γ :g!c′(ẽ)U;P

Dsnd
(c ̸= ⋆) =⇒ (¬{gr[c/ch]}γ)

Γ :Get(x̃, ẽ)@(ℓ, g)U;P
(π?(d̃)

c
) - Γ :Get(x̃, ẽ)@(ℓ, g)U;P

Dget

(c = ⋆) =⇒ ¬({π}γ◦f)

Γ : (x̃)c?U;P
(π?(d̃)

⋆
) - Γ : (x̃)c?U;P

Dbrd
(c ̸= ⋆) =⇒ (¬{gr[c/ch]}γ)

Γ :Supply(x̃, ẽ)@(ℓ)U;P
(π?(d̃)

c
) - Γ :Supply(x̃, ẽ)@(ℓ)U;P

Dsply

c ̸= ⋆ (¬{gr[c/ch]}γ)

Γ : (x̃)c′?U;P
(π?(d̃)

c
) - Γ : (x̃)c′?U;P

Dmst

(γ ⊭ π[d̃/x̃] ∧ c = ⋆) ∨ Γ :P
(π′?(d̃)c) - Γ :P

Γ :{π(x̃)}P (π′?(d̃)c) - Γ :{π(x̃)}P
Dgrd

Γ :P1
(π?(d̃)

c
) - Γ :P1 Γ :P2

(π?(d̃)
c
) - Γ :P2

Γ :P1 + P2
(π?(d̃)

c
) - Γ :P1 + P2

Dsum

Γ :P [rep X. P/X]
(π?(d̃)

c
) - Γ :P

Γ : rep X. P
(π?(d̃)

c
) - Γ : rep X. P

rep

Γ :0
(π?(d̃)

c
) - Γ :0

Dnil

Table 3: Negative Process Semantics

configuration of A1 is changed by this transition by

storing e in cLink.
A supply action is defined by the rules Dsply and

Nsply. The rule Dsply is used for a deterministic point-

to-point selection where the getter targets the supplier

by its locality. In this case, only the targeted supplier is
permitted to participate. On the other hand, the rule

Nsply is used for anonymous nondeterministic selection

where any supplier that satisfies the getter predicate it

satisfies the sender predicate (up to relabelling, i.e., the

closure {π}γ◦f holds) may participate. In both rules,
the selected supplier is able to both receive data d̃1 and

supply data d̃2, and may perform store updates based

on the received data. The last four rules are standard

for modelling nondeterministic, guarded, and recursive

behaviours.

Agent A2 from Example 3 has the agent-level supply

transition

Γ 2
0 : P su

2

“A1”,e@(“A2”,true)
S

- Γ 2
0 : X,

where Γ 2
0 is as before and P su

2 is given in Example 3.

As before, a version of this transition for every possible

identity replacing “A1” above will also be available.

Finally, according to rules SumL and SumR, both

transitions for A1 are available from Γ 1
0 : (P s

1 + P g
1)

and both transitions for A2 are available from Γ 2
0 :

(P r
2 + P su

2).

The negative semantics of an R-CHECK agent is re-

ported in Table 3. These rules specify the cases when an

agent cannot receive a broadcast or a multicast message.

They distinguish broadcast from multicast in the sense

that the former cannot be blocked while the latter can

be blocked.

It is worth noting that the negative semantics could

be abstracted by a predicate specifying when an agent

is unable to receive a message. However, adopting such

an abstraction would conflict with our objective of pro-

viding a fully compositional semantics. While negative

semantics are clearly inefficient for implementation or au-
tomated reasoning—since they introduce a large number

of transitions in the underlying LTS—they are never-

theless more intuitive. In particular, negative seman-

tics, and compositional semantics more generally, make

proofs and inductive arguments more explicit, which
directly aligns with our goal of defining a compositional

framework.

For efficient implementation, we therefore addition-

ally provide an equivalent symbolic predicate seman-

tics, closely aligned with a BDD-based representation,

thereby preserving efficiency. The intended methodology

is to use the compositional semantics for constructing

and reasoning about systems in a modular fashion, while

relying on the equivalent symbolic predicate semantics

for efficient automated analysis. Accordingly, our model

checker does not operate on the enumerative LTS, but

on its predicate-based encoding.

Rule Dsnd in Table 2 specifies that an agent which

can only send in its current state has the ability to

discard and stay unchanged if the message is a broadcast

(i.e., c = ⋆) or it is not listening to the channel (i.e.,
¬{gr[ch/c]}γ is satisfiable). Notice the implication =⇒
in the premise. We used a negative implication because

it is more intuitive to understand in this context.

Similarly, a getter and a supplier can discard a mes-

sage if it is a broadcast or if they are not listening to

the channel as specified in rules Dget and Dsply.

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 11

The former rules state that unlike the broadcast,

a multicast can be blocked if the receiver is listening

to the channel but is not able to supply a matching

transition. This is to denote that the receiver can block

a multicast message until it is ready to participate. This

kind of behaviour is apparent in existing programming

languages through barrier synchronisation for instance.

A receiver agent, on the other hand, can discard a

message only in two cases, specified by rules Dbrd and

Dmst. The former states that a receiver can discard a

broadcast if it is either not currently ready to receive
a broadcast (i.e., does not have a matching broadcast

transition c ≠ ⋆) or it does not satisfy the sender predi-

cate it satisfies the sender predicate (up to relabelling,

i.e., the closure {π}γ◦f does not hold). The latter rule,

on the other hand, specifies when a receiver can dis-

card a multicast. The only way a receiver can discard a

multicast is if it is not listening to its channel.

A guarded agent (rule Dgrd) can discard a broad-

cast if its local predicate π(x̃) (possibly after substitution

to message data π[λ[d̃]/x̃]) is not satisfied or its process

can discard. However, a guarded agent can only discard

a multicast if its process can discard, and thus it is not

enough to not satisfying the local predicate.

The rules for nondeterminism and recursive calls

are standard. Namely, such agents can discard if all

parts of their behaviour can discard. Note that the

deadlocked agent in rule Dnil is special. Here, we allow

this agent to discard any message even without checking

the receiver predicate. The latter is important to ensure

that the parallel composition is idempotent; as otherwise

a process can block the whole system when it is blocked.

In practice, all R-CHECK processes are non-terminating
processes, i.e., all our agents are of the form Γ : rep X. P .

Notice that get actions cannot be discarded, and

thus are blocking in nature.

5.2 System-level semantics

We use the transition relation −→ ⊆ Sys × LAB × Sys
to define the behaviour of a system. This relation builds

on the agent-level transition relation to expose relevant

agent behaviour at system level. The set of system labels

LAB ranges over both positive agent-level labels, ranged

by λ, and a special τ label to denote hidden (or internal)

communication. Here, we use d̃@(ℓ, π)
τ
to denote such

label. We could have used τ immediately without further

details, but our choice is influenced by our need to model

check this behaviour. Moreover, the semantics shows

that such label cannot propagate in the system and

interact with more than one agent.

The semantics of an R-CHECK system is reported in

Table 4. Rule pSys states that an agent can expose a λ

label if its internal process can as a result of local action

execution. On the other hand, rule nSys states that a

local discard cannot be observed at system level, and

thus it is exposed as a message reception.

Accordingly, the agent-level transitions mentioned

above are exposed here as part of Rule pSys.

Rule Sync states that a broadcast or a multicast

message can propagate through the system and be re-

ceived by multiple agents, and thus modelling group

communication. Rule ComL (and its symmetrical rule

ComR) specifies that two composed system can com-

municate on a broadcast or a multicast if one of them

sends the message and the other receives it.

It follows from ComL that
(pv=client)!((join,c))⋆−−−−−−−−−−−−−→ is a

possible transition from Γ 1
0 : (P s

1+P g
1) ∥ Γ 2

0 : (P r
2+P su

2).

Notice that this exposes the send in case additional

processes were available they could also participate in

this broadcast.

On the other hand, rule getL (and its symmetri-

cal rule getR) specifies that a get-message does not
propagate in the system, but rather interleave with

other composed systems. This is also the case for a

supply and an internal communications as specified in

rules supplyL (and its symmetrical rule supplyR) and

tauL (and its symmetrical rule tauR) respectively.

The last two rules specify the bidirectional point-to-

point communication in our formalism. That is, p-pL

(and its symmetrical rule p-pR) state that if a getter

system agrees with a supplier system to perform bidirec-

tional information exchange then both systems privately

consume the exchanged data and evolve accordingly.

It follows from p-pL and p-pR that
“A1”,e@(“A2”,true)

τ

−−−−−−−−−−−−→
is another possible transition from Γ 1

0 : (P s
1 + P g

1) ∥
Γ 2
0 : (P r

2 + P su
2). Notice that once the get and supply

have been “consumed” by p-pL or p-pR the only option

for other processes to interact is by not blocking this τ

transition according to rules tauL and tauR.

In the following lemma, we show that parallel com-

position ∥ is a commutative monoid. We use a standard

strong bisimulation [27] to establish the properties of ∥.

Lemma 1 (∥ is a commutative monoid)

– ∥ is commutative: S1∥S2 ∼ S2∥S1

– ∥ is associative: (S1∥S2)∥S3 ∼ S1∥(S2∥S3)

– ∥ has an idempotent element: (S∥Γ :0) ∼ S

The proof of this lemma follows by conducting a

case analysis on the transition relation S
α−→ S′ for every

system-level label α.

In the future, we would like to prove that this se-

mantics coincides with the symbolic closed one.

Consider system-level label li, system state si for

all i ≥ 0, an execution of an R-CHECK system is the

12 Y. Abd Alrahman et al.

⟨γ, gr, id, f⟩ : P λ- ⟨γ, gr, id, f⟩ : P ′

⟨γ, gr, id, f⟩ : P λ−→ ⟨γ, gr, id, f⟩ : P ′
pSys

⟨γ, gr, id, f⟩ : P (π?(d̃)
c
) - ⟨γ, gr, id, f⟩ : P

⟨γ, gr, id, f⟩ : P π?(d̃)
c

−−−−−→ ⟨γ, gr, id, f⟩ : P
nSys

S1
π?(d̃)

c

−−−−−→ S′1 S2
π?(d̃)

c

−−−−−→ S′2

S1 ∥ S2
π?(d̃)

c

−−−−−→ S′1 ∥ S′2

Sync

S1
π!(d̃)

c

−−−−→ S′1 S2
π?(d̃)

c

−−−−−→ S′2

S1 ∥ S2
π!(d̃)

c

−−−−→ S′1 ∥ S′2

ComL
S1

π?(d̃)
c

−−−−−→ S′1 S2
π!(d̃)

c

−−−−→ S′2

S1 ∥ S2
π!(d̃)

c

−−−−→ S′1 ∥ S′2

ComR

S1
d̃1,d̃2@(ℓ,π)

G

−−−−−−−−−→ S′1

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

G

−−−−−−−−−→ S′1 ∥ S2

getL
S2

d̃1,d̃2@(ℓ,π)
G

−−−−−−−−−→ S′2

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

G

−−−−−−−−−→ S1 ∥ S′2

getR

S1
d̃1,d̃2@(ℓ,π)

S

−−−−−−−−−→ S′1

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

S

−−−−−−−−−→ S′1 ∥ S2

supplyL
S2

d̃1,d̃2@(ℓ,π)
S

−−−−−−−−−→ S′2

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

S

−−−−−−−−−→ S1 ∥ S′2

supplyR

S1
d̃1,d̃2@(ℓ,π)

τ

−−−−−−−−−→ S′1

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

τ

−−−−−−−−−→ S′1 ∥ S2

tauL
S2

d̃1,d̃2@(ℓ,π)
τ

−−−−−−−−−→ S′2

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

τ

−−−−−−−−−→ S1 ∥ S′2

tauR

S1
d̃1,d̃2@(ℓ,π)

G

−−−−−−−−−→ S′1 S2
d̃1,d̃2@(ℓ,π)

S

−−−−−−−−−→ S′2

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

τ

−−−−−−−−−→ S′1 ∥ S′2

p-pL
S1

d̃1,d̃2@(ℓ,π)
S

−−−−−−−−−→ S′1 S2
d̃1,d̃2@(ℓ,π)

G

−−−−−−−−−→ S′2

S1 ∥ S2
d̃1,d̃2@(ℓ,π)

τ

−−−−−−−−−→ S′1 ∥ S′2

p-pR

Table 4: System Semantics

infinite sequence s0, l0, s1, l1, s2 . . . such that the tran-

sition (si
li−→ si+1) is derivable from Table 4, and s0 is

the initial state.

6 Model Checking LTOL with Point-to-Point

Formulas

To reason about R-CHECK systems, we have previously

introduced ltol [1], an extension of Linear Time Tem-

poral logic (ltl) with the ability to refer and therefore

reason about agents interactions using observation de-

scriptors. See Appendix A for full exposition.

Here we augment ltol observation descriptors to
be able to refer to point-to-point communication, the

full logic is here:

O ::= p2p | ¬p2p | ℓ | ¬ℓ | pv | ¬pv | ch | ¬ch | k | ¬k
| d | ¬d | •∃O | •∀O | O ∨O | O ∧O

φ ::= true | v | ¬v | φ ∨ φ | φ ∧ φ | Xφ

| φ U φ | φRφ | ⟨O⟩φ | [O]φ

The extension of ltol is a straightforward adjustment

of the model-checking algorithm in [1], where we in-

troduce two additional propositions to account for the

type of communication, the locality, and their respective

semantic encoding. Namely, the proposition p2p denotes

the type of the communication, ℓ denotes the targeted

locality, pv is a property identifier, ch is a channel name

(identifying the channel the current message is sent on),

k is an agent identifier (indicating the agent initiat-

ing the current interaction), and d is a data variable

(whose value is determined by the payload of the current

message).

Note that φ is a classical LTL in negation normal

form, with the next operator replaced by ⟨O⟩φ and

[O]φ, which are predicated by observation descriptors

O. These are built from referring to the different parts

of the message, the added point-to-point descriptors

p2p, and their Boolean combinations. Send predicates

(part of messages) are interpreted as sets of possible

assignments to property identifiers pv. Thus, we include

existential •∃O and universal •∀O quantifiers over these

assignments. Other operators such as X, U, and R are

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 13

the standard LTL operators “next”, “until”, and “re-

lease”. We also derive the operators Fφ = true U φ

(“eventually”) and Gφ = ¬true Rφ (“globally”).

For the full semantics of ltol see [1]. Here, we

describe it informally and only introduce the formal

semantics for the new atoms.

Recall that the transition relation of a ReCiPe system

relates a system state s to its successor s′ given an

exchanged tuple t = (ℓ,d, k, π) in the point-to-point

case, while other modes of interaction feature a message

m = (ch,d, k, π). Thus, we interpret the modified ltol

formulas over a system computation ρ, a function from

natural numbers N to 2V × (M ∪ T) where V is the set

of state variable propositions, M is the set of messages,

and T is the set of tuples. Note that given a point-to-

point tuple (ℓ,d, k, π), we cannot single out the part of

data contributed by the getter or the setter separately.

This is because when the connection is established such

details are hidden from an external observer.

The satisfaction of ch, d, and k propositions depends

whether they exist in the message m or not. However, a

message satisfies the pv proposition, written m ⊨ pv, iff

for every assignment c ⊨ π we have c ⊨ pv.

The interesting cases are when we quantify over pv,

i.e., those of •∃O and •∀O:

m ⊨ •∃O iff there is an assignment c ⊨ π such that

(ch, d, k, {c}) ⊨ O

m ⊨ •∀O iff for every assignment c ⊨ π it holds that

(ch, d, k, {c}) ⊨ O

t ⊨ •∃O iff there is an assignment c ⊨ π such that

(ℓ, d, k, {c}) ⊨ O

t ⊨ •∀O iff for every assignment c ⊨ π it holds that

(ℓ, d, k, {c}) ⊨ O

To generalise these definitions to the extended set-

ting, we use li, called communication payload, to range

over either a tuple ti or a message mi at time i. We

replicate these definitions for communications payload,

in the obvious way, with the same definitions, except

that a ch is never satisfied for a point-to-point payload.

Negation and Boolean combinations are dealt with in

the standard way.

We give the formal semantics for the new proposi-

tions.

l ⊨ p2p iff l(ℓ) ̸= ⊥ and l ⊨ ¬p2p iff l(ℓ) = ⊥;
l ⊨ ℓ′ iff l(ℓ) = ℓ′ and l ⊨ ¬ℓ′ iff l(ℓ) ̸= ℓ;

Note l(ℓ) = ⊥ indicates the tuple is a message ex-

changed during non-point-to-point communication. In-

tuitively, a payload l satisfies a locality proposition ℓ′ if

its locality component ℓ equals ℓ′ and does not satisfy

ℓ′ otherwise. The negative case also includes when l

is a message, because l(ℓ) returns ⊥ in that case. We

assume that ⊥ is is different from all other localities.

Moreover, a payload l satisfies p2p if and only if l(ℓ) = ⊥,
namely l is a message. Note that we can use the keywords

getter, supplier, sender to refer to the agent’s locality that

is responsible for exchange in R-CHECK, where the first

two refer to p2p and the latter for either broadcast or

multicast. The embedding of the descriptors for point-

to-point to R-CHECK is done similar to [1].

The semantics of an ltol formula φ is defined for

a computation ρ at a time point i. We give semantics

for formulas with observation descriptors, and other

formulas are interpreted exactly as in ltl.

ρ≥i ⊨ v iff si ⊨ v and ρ≥i ⊨ ¬v iff si ̸⊨ v;

ρ≥i ⊨ ⟨O⟩φ iff li ⊨ O and ρ≥i+1 ⊨ φ;

ρ≥i ⊨ [O]φ iff li ⊨ O implies ρ≥i+1 ⊨ φ.

The temporal formula ⟨O⟩φ is satisfied on the com-

putation ρ at point i if the payload li satisfies O and φ is

satisfied on the suffix computation ρ≥i+1. On the other

hand, the formula [O]φ is satisfied on the computation
ρ at point i if li satisfying O implies that φ is satisfied

on the suffix computation ρ≥i+1.

7 The Superiority of Attributed Point-to-Point

In this section, we showcase the power of bidirectional

attributed point-to-point communication. To do so, we

discuss an improved version of the system described

in [2], where we only considered omnidirectional flow of

information. We also show this expressive power with re-
spect to existing anonymous communication primitives

like attributed broadcast. Indeed, despite the undeni-

able advantages of anonymous communication primi-

tives such as attributed broadcast, they still suffer from

serious modelling issues. This is more apparent when

considering modelling under open-world assumption,

which is the main motivation behind anonymous com-

munication. The latter allows agents to interact while

not being aware of the existence of each other. It also
facilitates seamless introduction of agents at run-time

(or dynamic creation) without disrupting the overall sys-

tem behaviour (though this is currently not supported

by ReCiPe and R-CHECK).

Here, we consider the problem of designing protocols

with deadlock freedom and guaranteed progress. By def-

inition, a protocol imposes dependence relations among

interacting agents where some agents provide services

that other agents consume. The problem occurs when

an agent anonymously requests for a service and later

waits for a response that will never arrive, namely, when

14 Y. Abd Alrahman et al.

no provider exists. The agent gets deadlocked because

it cannot determine whether the response is delayed or

will never arrive.

We argue that our attributed point-to-point provides

an elegant solution to this problem without compro-

mising anonymity. To showcase this, we consider the

scenario of stable allocation in content delivery net-

works that was modelled in the AbC calculus [9] which

supports anonymous broadcast. The problem is about

matching equally sized sets of clients and servers based

on an order of preferences such that there are no client

and server in different matchings that both would prefer

each other rather than their current partners. We argue

that the protocol cannot be guaranteed to progress by

only relying on anonymous broadcast.

The protocol in [9] relies on an open-world assump-

tion whereby new agents can join at any time. Due to

anonymity and non-blocking of AbC broadcast, a client

broadcasts a proposal for servers to form a pair and

waits for a response. However, if the proposal is sent
before any server instance is created, then the proposal

will be lost and the client will deadlock waiting for a re-

sponse. To overcome this, the protocol in [9] introduces

a counter that starts counting for a sufficiently large

threshold, before it times out and the client proposes

again. However, it is possible (due to uncontrolled net-

work delays) that in most executions a positive response

is received after the threshold is reached. Thus, the pro-

tocol gets stuck at the stage of proposal and does not

get to progress. Here we show how to simply fix this

problem.

We consider that servers and clients use the following

data variables in interaction ID, LNK, RT, and D, where
ID carries a locality, RT carries the rating of a server,

and D carries the demand of a client. A client uses the

local variables rating, Partner, xPartner, and demand to

control its behaviour, where “rating” stores the rating of

current connected server, “Partner” and “xPartner” store

the locality of current and previous connected server;

“demand” can take “H” for high demand service and “L”

for low demand service of the client.

A generic client’s initial condition θc is:

rating = Partner = xPartner = ⊥,

specifying that the client is not connected to any server.

We can later create different clients with different de-

mands. The receive guard grc is (ch = ⋆). That is, recep-

tion is always enabled on broadcast. Now, the behaviour

of a client is reported in the R-CHECK process below:

rep X. (
⟨rating ̸= “H” ∧ rating ̸= RT⟩Get((RT, ID), (id, demand))

@any[rating := RT; xPartner := Partner;Partner := ID];

[

⟨xPartner = “⊥”⟩X

+

⟨xPartner ̸= “⊥”⟩Get(,)@xPartner[xPartner := “⊥”];X

]

Intuitively, the client is either repeatedly trying to

connect to a server when it is not yet paired to a high

rating server (rating ̸= “H”). That is, the client uses a

blocking get-command to establish connection to any

server that enhances its situation. That is, it does not ac-

cept a server with rating similar to its own (rating ̸= RT).
If interaction is possible, the client sets rating to the
rating of the server, swaps its current partner with the

new one. Moreover, the client sends its locality and

current demand to the new server simultaneously. It

also needs to disconnect by issuing a get-command tar-

geting its previous partner if exists, as shown in the
nondeterministic choice +.

Now, a server uses the local variables rating, Partner,
demand to control its behaviour, where “rating” stores

the server rating and all other are defined as before. A

generic server’s initial condition θs is:

demand = Partner = ⊥,

specifying that the server is not connected to any client.

We can later create different servers with different rating

and private links. The receive guard grs is the same as the

client’s one. Now, the behaviour of a server is reported

in the R-CHECK process below:

rep X. (
⟨Partner = “⊥”⟩Supply((ID,D), (rating, id))

@any[Partner = ID; demand := D];X

+

⟨Partner ̸= “⊥” ∧ demand ̸= D ∧ demand ̸= “L”⟩
Supply((ID,D), (rating, id))@any

[Partner = ID; demand := D];X

+

⟨true⟩Supply(,)@self

[demand := Partner :=“⊥”];X
)

Similarly, the server is either willing to supply con-

nection to a client or dissolve from current client (last

two lines). In the former cases, if the server does not

have a partner, it will accept any connection; otherwise,

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 15

the server only accepts clients if its improves on its cur-

rent assigned demand (i.e., optimal case for servers is

to accept demands that are better than their current

ones). In that case, it supplies a tuple containing its own

rating and its locality. Moreover, it stores the identity

and the demand of the client locally.

As opposed to the protocol written in AbC [9], this

one is very simple and compact, and thus more amend-

able to formal verification. Moreover, progress towards

stability and deadlock-freedom are guaranteed given

that the number of the clients is equal to the number

of servers, which is anyway the assumption in [9] and a

necessary condition for stability.

Moreover, this model is much more compact and
easier to understand than the one presented in the con-

ference version [2]. Thanks to the bidirectional informa-

tion flow support for anonymous point-to-point commu-

nication. In the conference version, only the supplier

(the server) was able to transfer data to the getter (the

client), and thus the client had to send its information in

a subsequent multicast to the server. The latter checks,

afterward, if it wants to stay connected; otherwise it

disconnects. This was unavoidable because there was no
other way to make the server and client agree. However,

these added communication were just a noise and made

the protocol much harder to understand. Now that we

allow bidirectional flow of information, we can avoid all

multicast transitions and establish the protocol merely

on unicast, without compromising anonymity.

We can easily create an R-CHECK system and verify
its behaviour as follows.

system = PC(client1, demand = “L”) ∥ PC(client2, demand = “H”)
∥ PC(client3, demand = “H”) ∥ PS(server, rating = “L”)
∥ PS(server, rating = “L”) ∥ PS(server, rating = “H”)

Namely, we have 3 clients, one with low demands

and two with high demands. We have also created 3

servers with only one high-rating profile. Now, we can

use the following formulas to reason individually and
collectively.

∧
k∈PC

(Partnerk = ⊥) =⇒

G[getter = k ∧ p2p]F(Partnerk ̸= ⊥)
(1)

FG

(∧
k∈PC

(Partnerk ⇐⇒ X (Partnerk))∧

∧
j∈PS

(Partnerj ⇐⇒ X (Partnerj))

) (2)

Formula (1) specifies that, for any client k, if k is

not paired and it attempts paring with a server, it must

always eventually get paired. Formula (2) requires that

the protocol converges after a while, i.e., all servers and

clients stay connected to the same partners.

8 A New R-CHECK Implementation

Beyond extending R-CHECK with support for point-to-

point communication, as exposed above, we also report

on a new open-source implementation1 of R-CHECK as a

Visual Studio Code (VSCode) extension. The extension

is written in TypeScript on top of the Langium language

engineering framework.2 Compared to the original im-

plementation [1], it features an improved parser with

more accurate error reporting, syntax highlighting, and

keyword autocomplete. Furthermore, it lets the user

jump to a variable declaration by clicking on any of its

references while pressing the Control (or Command) key.

Most of these features are automatically implemented

by Langium, with very little additional effort on our

part. We simply formalised the syntax of R-CHECK in a

form of EBNF supported by the framework; this comes

with the additional advantage that the EBNF is now

the single source of truth for the grammar.

As part of the extension, we implement several addi-

tional static checks to validate specifications after suc-
cessful parsing. For instance, duplicate variable names

are now automatically detected and reported to the

user. The extension also features a basic type checker,

by which we can catch a number of errors in other-

wise well-formed specifications (such as assignments to

variables of mismatching type, or malformed LTOL ob-

servations) [30]. Figure 1 contains several screenshots

that show the capabilities of our extension and how

issues with a ReCiPe specification are reported to the
user. These issues can come from parsing, from unsuc-

cessful static validation, or from breaking a type rule.

In any case, the user can see these outcomes both in the

Problems pane and as red underlines in the document.

By hovering on an underlined token, a tooltip appears

that describes the problem in detail.

The extension relies on a command-line version of the

existing R-CHECK implementation [1] to enable verifica-

tion of ReCiPe systems using IC3. Specifically, whenever

the user wants to verify a system, the extension passes

a serialized AST of the ReCiPe file to the tool, which

translates it into an SMV file. Then, this file is model-

checked using NuXmv [17]. (The SMV translation may

be inspected by running the command R-CHECK: Show

SMV Translation from the VSCode command palette.)

If a negative verdict is returned for any property, we

1 Code and setup instructions are available at https://

github.com/dsynma/rcheck.
2 https://langium.org/

https://github.com/dsynma/rcheck
https://github.com/dsynma/rcheck
https://langium.org/

16 Y. Abd Alrahman et al.

Fig. 1: Screenshots of Visual Studio Code with the R-CHECK extension enabled, showing the outcome of unsuccessful

parsing and static checks, and type checking.

once again rely on the command-line tool to translate

the counterexample into a ReCiPe execution trace, show-

ing the states of agents and their interactions through

messages. This polished counterexample is then shown

to the user in a dedicated editor tab (Figure 3). We are

currently working on integrating our existing interpreter

to allow interactive simulations.

9 Related Work

Point-to-point communication is a common communi-
cation mode systems use to exchange messages in a

synchronous manner. The π-calculus [27] uses it as its

only mode of communication, but only through recon-

figurable channelled communication. There is a classical

result that other modes, like channelled broadcast, can-

not be encoded well in π-calculus, and vice versa chan-

nelled broadcast is not enough to encode channelled

point-to-point [21]. The π-calculus does not support

attribute-based communication either, unlike our ap-

proach.

As for attribute-based formalisms, we find approaches

such as AbC [7,10] and AbU [28], which (as discussed

in Sect. 7) do not handle point-to-point communica-
tion and thus require encoding a protocol to enable this

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 17

Fig. 2: The R-CHECK extension showing a type checking error.

Fig. 3: The R-CHECK extension showing a model-checking report for the ReCiPe example presented in [1].

over multiple time steps. Carma is an example of an

attribute-based approach that handles both broadcast

and unicast. It is a language for defining and reasoning

quantitatively about collective adaptive systems [25].

Like R-CHECK [4,3], they support attribute-based com-

munication, so that communication can be established

based on attributes. However, they do not support re-

configuration based on channels. Channels are statically

known and cannot be passed at runtime. In Carma, uni-

cast is defined over channels, guarded by predicates over

agent attributes (similar to our guards over pv). While

R-CHECK allows for similar unicast-based on predicates,

agents can also directly refer to the identity of an agent.

Such localities can be encoded as attributes in Carma;

however, and unlike our approach, this does not guar-

antee that communication is safe from interference by

other agents, since agents can modify their attributes

maliciously.

18 Y. Abd Alrahman et al.

Instead of channelled point-to-point communication,

our approach supports purely attribute-based or locality-

based communication. This allows for a level of anonymity:

the supplier and getter do not need to know each other

or know the proper channel to communicate on, while

localities can be learned at runtime.

Another approach to modelling processes is that of

tuple spaces (e.g., [19,20]), dropping entirely channels

and using solely localities. Here, agents do not communi-

cate directly, but through retrieving and storing tuples in

tuple spaces. In these approaches, tuple insertion cannot
be blocked, and retrieval is based on predicates over the

desired tuple. Our form of unicast cannot be modelled in

these approaches, given its anonymous nature. Consider

that relying on tuple spaces makes the communication

indirect and asynchronous, while in our approach the

communication is synchronous. SCEL [20] is an example

of such an approach, allowing higher-order communi-

cation, since processes can be stored and retrieved in

tuples. However, tuple spaces can grow arbitrarily large,

which poses a challenge to model checking.

With regards to connector-based approaches such

as BIP [16], the communication structure is defined a

priori using a set of connectors allowing a wide variety of

possible communication modes. This is an example of

an exogenous coordination model, which enforces a clear

separation between behavioural and communication con-

cerns. Recent work on BIP introduced reconfigurable

communication structures [14,15]. In keeping with the

exogenous model, reconfiguration decision are not taken

by the agents (components) but rather at a separate

network layer. R-CHECK, in turn, clearly adopts an en-

dogenous model where reconfiguration is carried out by
the agents themselves in a dynamic, possibly opportunis-

tic fashion.

10 Concluding Remarks

We have augmented ReCiPe and R-CHECK with bidi-

rectional point-to-point communication as a primitive,

beyond their original broadcast and multicast commu-

nication modes. Our focus is on raising the level of

abstraction and the feasibility of design. The idea is

that the objective of any modelling activity is to eventu-

ally reason about the design and verify its goals. Thus,

we need to provide a high-level set of primitives that

make modelling easier and produce models that are

amenable to formal verification. We have argued how

this new set of primitives enables better modelling of

multi-agent systems, through an illustrative case study

we can succinctly express in our extended language,

but more challenging for existing languages. Previously,

ReCiPe could only encode point-to-point communication

through a protocol of coordination on existing broadcast

and multicast channels, allowing for interference. With

the new primitives, point-to-point communication can

be modelled in a way that preserves the integrity of the

communication. We formally provided a compositional

semantics that specifies how the different communica-

tion modes co-exist without interference and showed

that they behave as expected. In the future, we would

like to provide a proof of correspondence between the

symbolic closed semantics and the compositional one.

We have also presented a new implementation of

R-CHECK as an extension to the Visual Studio Code

editor. This implementation improves the experience

of language users by providing syntax highlighting and

static checks to point out mistakes in the specifications,

including a simple type checker for expressions and as-

signments. As future work, we plan to improve this

extension along several directions. We might extend our

type system to perform more advanced static reasoning:

for instance, we might type commands by the type of

data they are willing to send or receive, and warn the

user about potential deadlocks if no matching receive

(or send) is present in the system. In time, we would

like to port all features from the original R-CHECK im-

plementation into the new one. This will require some

effort, as the former contains approximately 10,000 lines

of Java code.

We have recently initiated efforts to leverage R-CHECK

for correct-by-construction code generation targeting

ROS2 (the Robot Operating System). Our goal is to de-

velop a formal implementation semantics for R-CHECK,

building on approaches found in [11,6,5].

References

1. Abd Alrahman, Y., Azzopardi, S., Di Stefano, L., Piter-
man, N.: Language support for verifying reconfigurable
interacting systems. Int. J. Softw. Tools Technol. Transf.
25(5), 765–784 (2023). DOI 10.1007/S10009-023-00729-8.
URL https://doi.org/10.1007/s10009-023-00729-8

2. Abd Alrahman, Y., Azzopardi, S., Di Stefano, L., Piter-
man, N.: Attributed point-to-point communication in
R-CHECK. In: T. Margaria, B. Steffen (eds.) Leverag-
ing Applications of Formal Methods, Verification and
Validation. Rigorous Engineering of Collective Adaptive
Systems - 12th International Symposium, ISoLA 2024,
Crete, Greece, October 27-31, 2024, Proceedings, Part II,
Lecture Notes in Computer Science, vol. 15220, pp. 333–
350. Springer (2024). DOI 10.1007/978-3-031-75107-3 20.
URL https://doi.org/10.1007/978-3-031-75107-3_20

3. Abd Alrahman, Y., Azzopardi, S., Piterman, N.: Model
checking reconfigurable interacting systems. In: T. Mar-
garia, B. Steffen (eds.) Leveraging Applications of Formal
Methods, Verification and Validation. Adaptation and
Learning - 11th International Symposium, ISoLA 2022,
Rhodes, Greece, October 22-30, 2022, Proceedings, Part

https://doi.org/10.1007/s10009-023-00729-8
https://doi.org/10.1007/978-3-031-75107-3_20

A Compositional Semantics for Reconfigurable Multi-Mode Interaction in R-CHECK 19

III, Lecture Notes in Computer Science, vol. 13703, pp. 373–
389. Springer (2022). DOI 10.1007/978-3-031-19759-8 23.
URL https://doi.org/10.1007/978-3-031-19759-8_23

4. Abd Alrahman, Y., Azzopardi, S., Piterman, N.: R-check:
A model checker for verifying reconfigurable mas. In:
Proceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’22,
p. 1518–1520. International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC (2022).
DOI 10.5555/3535850.3536020

5. Abd Alrahman, Y., De Nicola, R., Garbi, G.: Goat:
Attribute-based interaction in google go. In: T. Mar-
garia, B. Steffen (eds.) Leveraging Applications of Formal
Methods, Verification and Validation. Distributed Sys-
tems - 8th International Symposium, ISoLA 2018, Limas-
sol, Cyprus, November 5-9, 2018, Proceedings, Part III,
Lecture Notes in Computer Science, vol. 11246, pp. 288–
303. Springer (2018). DOI 10.1007/978-3-030-03424-5\ 19.
URL https://doi.org/10.1007/978-3-030-03424-5_19

6. Abd Alrahman, Y., De Nicola, R., Garbi, G., Loreti, M.:
A distributed coordination infrastructure for attribute-
based interaction. In: C. Baier, L. Caires (eds.) Formal
Techniques for Distributed Objects, Components, and
Systems - 38th IFIP WG 6.1 International Conference,
FORTE 2018, Held as Part of the 13th International Fed-
erated Conference on Distributed Computing Techniques,
DisCoTec 2018, Madrid, Spain, June 18-21, 2018, Proceed-
ings, Lecture Notes in Computer Science, vol. 10854, pp.
1–20. Springer (2018). DOI 10.1007/978-3-319-92612-4\ 1.
URL https://doi.org/10.1007/978-3-319-92612-4_1

7. Abd Alrahman, Y., De Nicola, R., Loreti, M.: On the
power of attribute-based communication. In: E. Albert,
I. Lanese (eds.) Formal Techniques for Distributed Ob-
jects, Components, and Systems - 36th IFIP WG 6.1
International Conference, FORTE 2016, Held as Part
of the 11th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2016, Herak-
lion, Crete, Greece, June 6-9, 2016, Proceedings, Lecture
Notes in Computer Science, vol. 9688, pp. 1–18. Springer
(2016). DOI 10.1007/978-3-319-39570-8\ 1. URL https:

//doi.org/10.1007/978-3-319-39570-8_1

8. Abd Alrahman, Y., De Nicola, R., Loreti, M.: A calculus
for collective-adaptive systems and its behavioural theory.
Inf. Comput. 268 (2019). DOI 10.1016/j.ic.2019.104457

9. Abd Alrahman, Y., De Nicola, R., Loreti, M.: Program-
ming interactions in collective adaptive systems by relying
on attribute-based communication. Sci. Comput. Program.
192, 102428 (2020). DOI 10.1016/j.scico.2020.102428

10. Abd Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F.,
Vigo, R.: A calculus for attribute-based communication.
In: R.L. Wainwright, J.M. Corchado, A. Bechini, J. Hong
(eds.) Proceedings of the 30th Annual ACM Symposium
on Applied Computing, Salamanca, Spain, April 13-17,
2015, pp. 1840–1845. ACM (2015). DOI 10.1145/2695664.
2695668. URL https://doi.org/10.1145/2695664.2695668

11. Abd Alrahman, Y., Garbi, G.: A distributed API for
coordinating AbC programs. International Journal on
Software Tools for Technology Transfer (2020). DOI
10.1007/s10009-020-00553-4. URL https://doi.org/10.

1007%2Fs10009-020-00553-4

12. Abd Alrahman, Y., Perelli, G., Piterman, N.: Recon-
figurable interaction for MAS modelling. In: A.E.F.
Seghrouchni, G. Sukthankar, B. An, N. Yorke-Smith (eds.)
Proceedings of the 19th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’20,
Auckland, New Zealand, May 9-13, 2020, pp. 7–15. Inter-

national Foundation for Autonomous Agents and Multia-
gent Systems (2020). DOI 10.5555/3398761.3398768

13. Abd Alrahman, Y., Piterman, N.: Modelling and veri-
fication of reconfigurable multi-agent systems. Auton.
Agents Multi Agent Syst. 35(2), 47 (2021). DOI
10.1007/s10458-021-09521-x

14. Ahrens, E., Bozga, M., Iosif, R., Katoen, J.P.: Reasoning
about distributed reconfigurable systems. Proc. ACM
Program. Lang. 6(OOPSLA2), 145–174 (2022). DOI
10.1145/3563293

15. Ballouli, R.E., Bensalem, S., Bozga, M., Sifakis, J.: Pro-
gramming dynamic reconfigurable systems. International
Journal on Software Tools for Technology Transfer 23(5),
701–719 (2021). DOI 10.1007/s10009-020-00596-7

16. Bliudze, S., Sifakis, J.: The algebra of connec-
tors—structuring interaction in BIP. IEEE Transac-
tions on Computers 57(10), 1315–1330 (2008). DOI
10.1109/TC.2008.26

17. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mari-
otti, A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.:
The nuxmv symbolic model checker. In: Computer Aided
Verification - 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, Lecture
Notes in Computer Science, vol. 8559, pp. 334–342. Springer
(2014). DOI 10.1007/978-3-319-08867-9 22

18. Cohen, P.R., Levesque, H.J.: Intention is choice with
commitment. Artif. Intell. 42(2-3), 213–261 (1990). DOI
10.1016/0004-3702(90)90055-5

19. De Nicola, R., Gorla, D., Pugliese, R.: On the expres-
sive power of KLAIM-based calculi. Theor. Comput. Sci.
356(3), 387–421 (2006). DOI 10.1016/J.TCS.2006.02.007

20. De Nicola, R., Latella, D., Lluch-Lafuente, A., Loreti,
M., Margheri, A., Massink, M., Morichetta, A., Pugliese,
R., Tiezzi, F., Vandin, A.: The SCEL language: Design,
implementation, verification. In: M. Wirsing, M.M. Hölzl,
N. Koch, P. Mayer (eds.) Software Engineering for Col-
lective Autonomic Systems - The ASCENS Approach,
Lecture Notes in Computer Science, vol. 8998, pp. 3–71.
Springer (2015). DOI 10.1007/978-3-319-16310-9 1. URL
https://doi.org/10.1007/978-3-319-16310-9_1

21. Ene, C., Muntean, T.: Expressiveness of point-to-point ver-
sus broadcast communications. In: G. Ciobanu, G. Păun
(eds.) Fundamentals of Computation Theory, pp. 258–268.
Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

22. Fagin, R., Halpern, J., Moses, Y., Vardi, M.Y.: Reasoning
about Knowledge. MIT Press (1995)

23. Hannebauer, M.: Autonomous Dynamic Reconfiguration
in Multi-Agent Systems, Improving the Quality and Ef-
ficiency of Collaborative Problem Solving, Lecture Notes
in Computer Science, vol. 2427. Springer (2002). DOI
10.1007/3-540-45834-4

24. Huang, X., Chen, Q., Meng, J., Su, K.: Reconfigurability
in reactive multiagent systems. In: S. Kambhampati (ed.)
Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, New York,
NY, USA, 9-15 July 2016, pp. 315–321. IJCAI/AAAI
Press (2016). URL http://www.ijcai.org/Abstract/16/

052

25. Loreti, M., Hillston, J.: Modelling and analysis of col-
lective adaptive systems with CARMA and its tools.
In: M. Bernardo, R. De Nicola, J. Hillston (eds.) For-
mal Methods for the Quantitative Evaluation of Col-
lective Adaptive Systems - 16th International School
on Formal Methods for the Design of Computer, Com-
munication, and Software Systems, SFM 2016, Berti-
noro, Italy, June 20-24, 2016, Advanced Lectures, Lec-

https://doi.org/10.1007/978-3-031-19759-8_23
https://doi.org/10.1007/978-3-030-03424-5_19
https://doi.org/10.1007/978-3-319-92612-4_1
https://doi.org/10.1007/978-3-319-39570-8_1
https://doi.org/10.1007/978-3-319-39570-8_1
https://doi.org/10.1145/2695664.2695668
https://doi.org/10.1007%2Fs10009-020-00553-4
https://doi.org/10.1007%2Fs10009-020-00553-4
https://doi.org/10.1007/978-3-319-16310-9_1
http://www.ijcai.org/Abstract/16/052
http://www.ijcai.org/Abstract/16/052

20 Y. Abd Alrahman et al.

ture Notes in Computer Science, vol. 9700, pp. 83–119.
Springer (2016). DOI 10.1007/978-3-319-34096-8 4. URL
https://doi.org/10.1007/978-3-319-34096-8_4

26. Milner, R., Parrow, J., Walker, D.: A calculus of mobile
processes, I. Inf. Comput. 100(1), 1–40 (1992). DOI
10.1016/0890-5401(92)90008-4

27. Milner, R., Parrow, J., Walker, D.: A calculus of mobile
processes, II. Inf. Comput. 100(1), 41–77 (1992). DOI
10.1016/0890-5401(92)90009-5

28. Pasqua, M., Miculan, M.: AbU: A calculus for distributed
event-driven programming with attribute-based interac-
tion. Theoretical Computer Science 958, 113841 (2023).
DOI 10.1016/j.tcs.2023.113841

29. Piterman, N., Pnueli, A.: Temporal logic and fair discrete
systems. In: E.M. Clarke, T.A. Henzinger, H. Veith,
R. Bloem (eds.) Handbook of Model Checking, pp. 27–73.
Springer (2018). DOI 10.1007/978-3-319-10575-8 2. URL
https://doi.org/10.1007/978-3-319-10575-8_2

30. Stolz, B.: Type checking a novel language for recon-
figurable multi-agent systems. Bachelor’s Thesis, TU
Wien, Austria (2025). URL https://www.lucadistefano.

eu/theses/bsc_stolz_2025.pdf

31. Wooldridge, M.J.: An Introduction to MultiAgent Sys-
tems, Second Edition. Wiley (2009)

A LTOL: An extension of LTL

ltol is an extension of ltl with the ability to refer and
therefore reason about agents interactions. It replaces the
next operator of ltl with the observation descriptors: possible
⟨O⟩ and necessary [O], to refer to messages and the intended
set of receivers. The syntax of formulas φ and observation

descriptors O is as follows:

φ ::= v | ¬v | φ ∨ φ | φ ∧ φ | φ U φ | φRφ | ⟨O⟩φ | [O]φ
O ::= pv | ¬pv | ch | ¬ch | k | ¬k | d | ¬d | •∃O | •∀O

| O ∨O | O ∧O

We use classic abbreviations →,↔, the usual definitions for
true and false, and the temporal abbreviations Fφ ≡ true U φ
(eventually), Gφ ≡ ¬F¬φ (globally) and φ W ψ ≡ ψ R (ψ ∨
φ) (weak until). Furthermore we assume that all variables
are Boolean because every finite domain can be encoded by
multiple Boolean variables. For convenience we, however, use
non-Boolean variables when relating to our example.

The syntax of ltol is presented in positive normal form.
That is, we push the negation down to atomic propositions.
We, therefore, use Θ to denote the dual of formula Θ where
Θ ranges over either φ or O. Intuitively, Θ is obtained from Θ
by switching ∨ and ∧ and by applying dual to sub formulas,
e.g., φ1 U φ2 = φ1 Rφ2, φ1 ∧ φ2 = φ1 ∨ φ2, pv = ¬pv, and
•∃O = •∀O.

Observation descriptors are built from referring to the
different parts of the observations and their Boolean com-
binations. Thus, they refer to the channel in ch, the data
variables in d, the sender k, and the predicate over property
variables in pv. These predicates are interpreted as sets of
possible assignments to property variables, and therefore we
include existential •∃O and universal •∀O quantifiers over
these assignments.

The semantics of an observation descriptor O is defined
for an observation m = (ch, d, k, π) as follows:

m ⊨ ch′ iff ch = ch′ m ⊨ ¬ch′ iff ch ̸= ch′

m ⊨ d′ iff d(d′) m ⊨ ¬d′ iff ¬d(d′)
m ⊨ k′ iff k = k′ m ⊨ ¬k′ iff k ̸= k′

m ⊨ pv iff for every assignment c ⊨ π we have c ⊨ pv
m ⊨ ¬pv iff exists an assignment c ⊨ π such that c ̸⊨ pv
m ⊨ •∃O iff exists an assignment c ⊨ π and (ch, d, k, {c}) ⊨ O
m ⊨ •∀O iff for every assignment c ⊨ π implies (ch, d, k, {c}) ⊨ O
m ⊨ O1 ∨O2 iff either m ⊨ O1 or m ⊨ O2

m ⊨ O1 ∧O2 iff m ⊨ O1 and m ⊨ O2

We only comment on the semantics of the descriptors •∃O
and •∀O as the rest are standard propositional formulas. The
descriptor •∃O requires that at least one assignment c to the
common variables in the sender predicate π satisfies O. Dually
•∀O requires that all assignments in π satisfy O. Using the
former, we express properties where we require that the sender
predicate has a possibility to satisfy O while using the latter
we express properties where the sender predicate can only
satisfy O. For instance, both observations (ch,d, k, pv1 ∨ ¬pv2)
and (ch,d, k, pv1) satisfy •∃pv1 while only the latter satisfies
•∀pv1. Furthermore, the observation descriptor •∀false∧ch = ⋆
says that a message is sent on the broadcast channel with
a false predicate. That is, the message cannot be received
by other agents. For example, the descriptor •∃(@type = t1) ∧
•∀(@type = t1) says that the message is intended exactly for
agents of type-1.

The semantics of •∃O and •∀O (when nested) ensures that
the outermost cancels the inner ones, e.g., •∃(O1 ∨ (•∀(•∃O2)))
is equivalent to •∃(O1 ∨O2). Furthermore, when pv and re-
spectively ¬pv appear outside the scope of a quantifier (•∀
or •∃), they are semantically equivalent to the descriptors
•∀pv and respectively •∃¬pv. Thus, we assume that they are
written in the latter normal form.

We interpret ltol formulas over system computations:

Definition 4 (System computation) A system computation
ρ is a function from natural numbers N to 2V ×M where V is
the set of state variable propositions and M = ch× 2d ×K ×
22

pv
is the set of possible observations. That is, ρ includes

values for the variables in 2V and an observation in M at each
time instant.

We denote by si the system state at the i-th time point
of the system computation. Moreover, we denote the suffix of
ρ starting with the i-th state by ρ≥i and we use mi to denote
the observation (ch,d, k, π) in ρ at time point i.

The semantics of an ltol formula φ is defined for a com-
putation ρ at a time point i as follows:

ρ≥i ⊨ v iff si ⊨ v and ρ≥i ⊨ ¬v iff si ̸⊨ v;
ρ≥i ⊨ φ2 ∨ φ2 iff ρ≥i ⊨ φ1 or ρ≥i ⊨ φ2;
ρ≥i ⊨ φ2 ∧ φ2 iff ρ≥i ⊨ φ1 and ρ≥i ⊨ φ2;
ρ≥i ⊨ φ1 U φ2 iff there exists j ≥ i s.t. ρ≥j ⊨ φ2 and,

for every i ≤ k < j, ρ≥k ⊨ φ1;
ρ≥i ⊨ φ1 Rφ2 iff for every j ≥ i either ρ≥j ⊨ φ2 or,

there exists i ≤ k < j, ρ≥k ⊨ φ1;
ρ≥i ⊨ ⟨O⟩φ iff mi ⊨ O and ρ≥i+1 ⊨ φ;
ρ≥i ⊨ [O]φ iff mi ⊨ O implies ρ≥i+1 ⊨ φ.

Intuitively, the temporal formula ⟨O⟩φ is satisfied on the
computation ρ at point i if the observation mi satisfies O
and φ is satisfied on the suffix computation ρ≥i+1. On the
other hand, the formula [O]φ is satisfied on the computation
ρ at point i if mi satisfying O implies that φ is satisfied on
the suffix computation ρ≥i+1. Other formulas are interpreted
exactly as in ltl.

By allowing the logic to relate to the set of targeted
robots, verifying all targeted robots separately entails the
correct “group usage” of channel A.

https://doi.org/10.1007/978-3-319-34096-8_4
https://doi.org/10.1007/978-3-319-10575-8_2
https://www.lucadistefano.eu/theses/bsc_stolz_2025.pdf
https://www.lucadistefano.eu/theses/bsc_stolz_2025.pdf

	Introduction
	Background Materials: The ReCiPe Formalism
	Extending ReCiPe with Attributed Point-to-Point Communication
	Syntax of the R-CHECK Language
	A Compositional Semantics for R-CHECK
	Model Checking LTOL with Point-to-Point Formulas
	The Superiority of Attributed Point-to-Point
	A New R-CHECK Implementation
	Related Work
	Concluding Remarks
	LTOL: An extension of LTL

